Synthesis and characterization of in situ polymerized poly(methyl methacrylate)–cerium molybdate nanocomposite for electroanalytical application
Corresponding Author
Asif Ali Khan
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India===Search for more papers by this authorCorresponding Author
Leena Paquiza
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India===Search for more papers by this authorCorresponding Author
Asif Ali Khan
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India===Search for more papers by this authorCorresponding Author
Leena Paquiza
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India
Faculty of Engineering and Technology, Department of Applied Chemistry, Analytical and Polymer Research Laboratory, Aligarh Muslim University, Aligarh 202002, India===Search for more papers by this authorAbstract
In the present study, a new technique to synthesize composites of poly(methyl methacrylate) cerium molybdate (PMMA–CeMoO4) is reported. The study concerns the characterization of poly(methyl methacrylate; PMMA) and PMMA–CeMoO4 nanocomposites are also discussed. The physical properties of the material were described using TGA–DTA, FTIR, X-ray, TEM, and SEM studies. The adsorption efficiency towards heavy metal ions was determined by distribution studies and material was found to be highly selective for lead, a heavy toxic metal ion, indicating the utility of the synthesized material for the removal of this ion from the waste stream. The material was used as electroactive component for the construction of an ion-selective membrane electrode. The membrane electrode was mechanically stable, having wide dynamic range, with quick response time and could be operated for at least 5 months without any considerable divergence in the potential response characteristics. The electrode was successfully used as indicator electrode in complexation titrations. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
References
- 1 Novak, B. M. Adv. Mater. 1993, 5, 422.
- 2 Schubert, U.; Husing, N.; Lorenz, A. Chem. Mater. 1995, 7, 2010.
- 3 Wen, J.; Wilkes, G. L. Chem. Mater. 1996, 8, 1667.
- 4 Lee, D. C.; Jang, L. W. J. Appl. Polym. Sci. 1996, 61, 1117.
- 5 Beecroft, L. L.; Ober, C. K. Chem. Mater. 1997, 9, 1302.
- 6 Wei, Y.; Wang, W.; Yeh, J. M.; Wang, B.; Yang, D.; Murray, J. K., Jr. Adv. Mater. 1994, 6, 372.
- 7 Wei, Y.; Jin, D.; Yang, C. C.; Wei, G. J. Sol. Gel Sci. Tech. 1996, 7, 191.
- 8 Wei, Y.; Jin, D.; Brennan, D. J.; Rivera, D. N.; Zhuang, Q.; DiNardo, N. J.; Qiu, K. Chem. Mater. 1998, 10, 769.
- 9 Wang, Q.; Liu, N.; Wang, X.; Li, J.; Zhao, X.; Wang, F. Macromolecules 2003, 36, 5760.
- 10 Matsuura, Y.; Miura, S.; Naito, H.; Inoue, H.; Matsukawa, K. J. Organomet. Chem. 2003, 685, 230.
- 11 Chujo, Y.; Matsuki, H.; Kure, S.; Saegusa, T.; Yazawa, T. J. Chem. Soc. Chem. Commun. 1994, 635.
- 12 Tamaki, R.; Samura, K.; Chujo, Y. Chem. Commun. 1998, 1131.
- 13 Tamaki, R.; Chujo, Y. Chem. Mater. 1999, 11, 1719.
- 14 Ogoshi, T.; Chujo, Y. Macromolecules 2004, 37, 5916.
- 15 Ogoshi, T.; Itoh, H.; Kim, K. M.; Chujo, Y. Macromolecules 2002, 35, 334.
- 16 Khan, A. A.; Akhtar, T. Electrochim. Acta 2009, 54, 3320.
- 17 Khan, A. A.; Paquiza, L.; Khan, A. J. Mater. Sci. 2010, 45, 3610.
- 18 Khan, A. A.; Khan, S. A.; Siddiqui, W. A. Talanta 2007, 71, 841.
- 19 Khan, A. A.; Inamuddin. React. Funct. Polym. 2006, 66, 1649.
- 20 Khan, A. A.; Alam, M. M. Anal. Chim. Acta 2004, 504, 253.
- 21 Khan, A. A.; Alam, M. M. React. Funct. Polym. 2003, 55, 277.
- 22 Petrucci, M.; Fenwick, D.; Kakkar, A. J. Mol. Catal. A: Chem. 1999, 146, 309.
- 23 Dallmann, K.; Buffon, R. Catal. Commun. 2000, 1, 9.
- 24 Guizard, C.; Bac, A.; Barboiu, M.; Hovnanian, N. Sep. Purif. Technol. 2001, 25, 167.
- 25 Iwata, M.; Adachi, T.; Tonidokoro, M. J. Appl. Polym. Sci. 2003, 88, 1752.
- 26 Jung, D. H.; Cho, S. Y.; Pech, D. H. J. Power Sources 2002, 106, 173.
- 27 Honma, I.; Nishikawa, O.; Sugimoto, T.; Nomura, S.; Nakajima, H. Fuel Cells 2002, 2, 52.
- 28 Barboiu, M.; Luca, C.; Guizard, C. J. Membr. Sci. 1997, 129, 197.
- 29 Barboiu, V.; Barboiu, M. J. Membr. Sci. 2002, 204, 97.
- 30 Ahmadi, S. J.; Huang, Y. D.; Li, W. J. Mater. Sci. 2004, 39, 1919.
- 31 Huang, Z. H.; Oiu, K. Y. Polym. Bull. 1995, 35, 607.
- 32 Wang, H. T.; Xu, P.; Zhong, W.; Shen, L.; Du, Q. Polym. Degrad. Stab. 2005, 87, 319.
- 33 Abbaspour, A.; Tavakol, F. Anal. Chim. Acta 1999, 378, 145.
- 34 Sadeghi, S.; Dashti, R. Z.; Shamsipur, M. Sensors Actuat. B 2002, 81, 228.
- 35 Rouhollahi, A.; Ganjali, M. R.; Shamsipur, M. Talanta 1998, 46, 1346.
- 36 Mousavi, M. F.; Barzegar, M. B.; Sahari, S. Sensors Actuat. B 2001, 73, 204.
- 37
Reiliy, C. N.;
Schmidt, R. W.;
Sadek, F. S.
J. Chem. Ed.
1959,
36,
555.
10.1021/ed036p555 Google Scholar
- 38 Coetzee, C. J.; Benson, A. J. Anal. Chim. Acta 1971, 57, 478.
- 39 Khan, A. A.; Khan, A.; Inamuddin. Talanta 2007, 72, 699.
- 40Recommendation for publishing manuscripts on ion-selective electrodes (prepared for publication by G.G. Guilbault), Commission on Analytical Nomenclature, Analytical chemistry Division, IUPAC, Ion-Sel El Rev 1969, 1.
- 41 Jain, A. K.; Singh, R. P.; Bala, C. Anal. Lett. 1982, 15, 1557.
- 42 Stickler, M.; Rhein, T. Polymethacrylates. Ullmann&'s Encyclopedia of Industrial Chemistry, 5th ed.; VHS: New York, 1992, A21.
- 43 Kine, B. B.; Novak, R. W. Encyclopedia of Polymer Science and Engineering; Wiley: New York, 1985, 262.
- 44 Gupta, A. P.; Agarwal, H.; Ikram, S. J. Ind. Chem. Soc. 2003, 80, 57.
- 45 Rawat, J. P.; Singh, J. P. Can. J. Chem. 1976, 54, 2534.
- 46 Kossel, W. Am. Phys. 1916, 49, 222.
- 47 Goldschmidt, V. M. Trans. Faraday Soc. 1925, 25, 320.
- 48
Paulling, L.
Am. J. Chem. Soc.
1929,
51,
1010.
10.1021/ja01379a006 Google Scholar
- 49 Alam, Z.; Inamuddin, N. Desalination 2010, 250, 515.
- 50 Khan, M. S.; Khalil, U.; Nasar, G. J. Pak. Mater. Soc. 2009, 3, 22.
- 51 Meneghetti, P.; Qutubuddin, S. Langmuir 2004, 20, 3424.
- 52 Duval, C. Inorganic Thermogravimetric Analysis; Elsevier: Amsterdam, 1963, 315.
- 53 Nilchi, A.; Maalek, B.; Kanchi, A.; Maragheh, M. G.; Bagheri, A. Radiat. Phys. Chem. 2006, 75, 301.
- 54 Rao, C. N. R. Chemical Applications of Infrared Spectroscopy; Academic Press: New York, 1963.
- 55 Huser, M.; Gehrig, P. M.; Morf, W. E.; Simon, W.; Lindner, C.; Jeney, J.; Toth, K.; Pungor, E. Anal. Chem. 1991, 63, 1380.
- 56 Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67, 507.
- 57 Cotton, F. A.; Wilkinson, G. Quimica Inorganica Avanzada, 4th ed.; Limusa: Mexico, 1996, 73.
- 58 Oesch, U.; Simon, W. Anal. Chem. 1980, 52, 692.