Synthesis of a branched poly(phenylene ethylene) with bromomethyl groups as an organosoluble and functional parylene
Ataru Kobayashi
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan
Search for more papers by this authorKentaro Sumi
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan
Search for more papers by this authorCorresponding Author
Gen-ichi Konishi
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan===Search for more papers by this authorAtaru Kobayashi
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan
Search for more papers by this authorKentaro Sumi
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan
Search for more papers by this authorCorresponding Author
Gen-ichi Konishi
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134, O-Okayama, Meguro-Ku, Tokyo 152-8552, Japan===Search for more papers by this authorAbstract
We synthesized a branched poly(phenylene ethylene) (BPPE) with bromomethyl groups from 1,3,5-tris(bromomethyl)benzene derivatives via the Wurtz coupling reaction. In the case of 1,3,5-tris(bromomethyl)-2,4,6-trimethoxybenzene as a monomer, the obtained polymer (Mn = 6100, Mw/Mn = 1.9) had bromomethyl groups. The 1HNMR analysis showed that a very large number of unreacted bromomethyl groups (Ph-CH2Br) remained in the BPPE; the reaction of this polymer with phenolic hydroxyl groups proceeded quantitatively. This suggested that BPPEs can be functionalized using unreacted bromomethyl groups, making them a very attractive starting point for the creation of functionalized BPPEs with further enhanced processability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
References
- 1 Szwarc, M. J Chem Phys 1948, 16, 128.
- 2 Schmidt, C. V.; Stümpflen, V.; Wendorff, J. H.; Hasenhindl, A.; Gronski, W.; Ishaque, M.; Greiner, A. Acta Polym 1999, 49, 232.
- 3 Simon, P.; Greiner, A. Polym J 1992, 24, 1317.
- 4 Song, J. S.; Lee, S.; Jung, S. H.; Cha, G. C.; Mun, M. S. J Appl Polym Sci 2009, 112, 3677.
- 5 Tanioka, A.; Fukushima, N.; Hasegawa, K.; Miyasaka, K.; Takahashi, N. J Appl Polym Sci 1994, 54, 219.
- 6 Krasovsky, A. M.; Tolstopyatov, E. M.; Grakovich, P. N. J Appl Polym Sci 1995, 57, 117.
- 7
Steiger, D.;
Tervoort, T.;
Weder, C.;
Smith, P.
Macromol Rapid Commun
2000,
21,
405.
10.1002/(SICI)1521-3927(20000501)21:8<405::AID-MARC405>3.0.CO;2-J CAS Web of Science® Google Scholar
- 8
Kirckpatrick, D. E.;
Wunderlich, B.
Makromol Chem
1985,
186,
2595.
10.1002/macp.1985.021861220 Google Scholar
- 9 You, L.; Yang, G.-R.; Lang, C.-I.; Moore, J. A.; Wu, P.; McDonald, J. F.; Lu, T.-M. J Vac Sci Technol A 1993, 11, 3047.
- 10 Schälfer, O.; Greiner, A. Macromolecules 1996, 29, 6074.
- 11 Voit, B. J Polym Sci Part A Polym Chem 2000, 38, 2505.
- 12 Gao, C.; Yan, D. Prog Polym Sci 2004, 29, 183.
- 13 Inoue, K. Prog Polym Sci 2000, 25, 453.
- 14 Fréchet, J. M. J Science 1994, 263, 1710.
- 15 Yan, D.; Müller, A. H. E.; Matyjaszewski, K. Macromolecules 1997, 30, 7024.
- 16 Kimura, T.; Nakamoto, Y.; Konishi, G. Polym J 2006, 38, 606.
- 17 Nemoto, T.; Konishi, G.; Arai, T.; Takata, T. Polym J 2008, 40, 622.
- 18 Nemoto, T.; Konishi, G. Polym J 2008, 40, 651.
- 19 Nemoto, T.; Amir, I.; Konishi, G. Polym J 2009, 41, 389.
- 20 Nemoto, T.; Amir, I.; Konishi, G. Polym J 2009, 41, 395.
- 21 Nemoto, T.; Konishi, G. Polym J 2010, 42, 185.
- 22 Konishi, G.; Tajima, T.; Kimura, T.; Tojo, Y.; Mizuno, K.; Nakamoto, Y. Polym J 2010, 42, 443.
- 23 Nemoto, T.; Konishi, G.; Tojo, Y.; Funaoka, M. Polym J 2010, 42, 896.
- 24 Nemoto, T.; Konishi, G.; Tojo, Y.; Funaoka, M. J Appl Polym Sci (DOI 10.1002/app.34623).
- 25 Nemoto, T.; Konishi, G. J Appl Polym Sci 2009, 113, 2719.
- 26 Konishi, G. J Syn Org Chem Jpn 2008, 66, 705.
- 27 Konishi, G. Kobunshi Ronbunshu 2009, 66, 331.
- 28 Li, Y.; Xu, T. W. J Appl Polym Sci 2009, 114, 3016.
- 29 Tang, B. B.; Wu, D., Xu, T. W. J Appl Polym Sci 2005, 98, 2414.
- 30 Miao, Y. R.; Wu, G. L.; Zhou, L.; Xu, W.; Xia, X. N.; Xu, W. J. J Appl Polym Sci 2008, 109, 397.
- 31 Jeerupan, J.; Konishi, G.; Nemoto, T.; Shin, D.-M.; Nakamoto, Y. Polym J 2007, 39, 762.
- 32 Shin, D. M.; Ozeki, N.; Nakamoto, Y.; Konishi, G. Macromol Res 2006, 14, 255.
- 33 Asai, K.; Konishi, G.; Sumi, K.; Kawauchi, S. Polym Chem 2010, 1, 321.
- 34 Kobayashi, A.; Konishi, G.; Shiraki, K. Polym J 2009, 41, 503.
- 35 Kobayashi, A.; Konishi, G. Polym J 2008, 40, 590.
- 36 Petreus, O.; Avram, E.; Lisa, G.; Serbezeanu, D. J Appl Polym Sci 2084 2010, 115.
- 37 Yan, C.; Zhang, S. H.; Liu, C.; Yang, D. L.; Yang, F. J.; Jian, X. G. J Appl Polym Sci 2009, 113, 1389.
- 38 Li, L.; Yan, G. P.; Wu, J. Y. J Appl Polym Sci 2009, 111, 1942.
- 39 Ji, C. N.; Qu, R. J.; Xu, Q.; Sun, C. M.; Song, Y. P. J Appl Polym Sci 2009, 111, 2148.
- 40 Fukuoka, T.; Uyama, H.; Kobayashi, S. Macromolecules 2003, 36, 8213.
- 41 Nemoto, T.; Amir, I.; Konishi, G. Polym J 2009, 41, 338.
- 42 Nemoto, T.; Ueno, T.; Nishi, M.; Shin, D. M.; Nakamoto, Y.; Konishi, G. Polym J 2006, 38, 1278.
- 43 Konishi, G.; Nojiri, Y.; Matsuo, T.; Nemoto, T.; Asai, K.; Sumi, K.; Nakamoto, Y. J Appl Polym Sci 2010, 118, 1651.
- 44
Hiemenz P. C.;
Lodge, T.
Polymer Chemistry,
2nd ed.;
CRC Press,
2007.
10.1201/9781420018271 Google Scholar
- 45 Niegisch, W. D. J Appl Phys 1996, 37, 4041.