Effect of potassium persulfate on graft copolymerization and mechanical properties of cassava starch/natural rubber foams
Corresponding Author
Varaporn Tanrattanakul
Faculty of Science, Bioplastic Research Unit, Polymer Science Program, Prince of Songkla University, Hadyai, Songkla 90112, Thailand
Faculty of Science, Bioplastic Research Unit, Polymer Science Program, Prince of Songkla University, Hadyai, Songkla 90112, Thailand===Search for more papers by this authorWannapa Chumeka
Faculty of Science, Bioplastic Research Unit, Polymer Science Program, Prince of Songkla University, Hadyai, Songkla 90112, Thailand
Search for more papers by this authorCorresponding Author
Varaporn Tanrattanakul
Faculty of Science, Bioplastic Research Unit, Polymer Science Program, Prince of Songkla University, Hadyai, Songkla 90112, Thailand
Faculty of Science, Bioplastic Research Unit, Polymer Science Program, Prince of Songkla University, Hadyai, Songkla 90112, Thailand===Search for more papers by this authorWannapa Chumeka
Faculty of Science, Bioplastic Research Unit, Polymer Science Program, Prince of Songkla University, Hadyai, Songkla 90112, Thailand
Search for more papers by this authorAbstract
The aim of this study was to improve the mechanical properties of thermoplastic starch foams prepared from cassava starch blended with natural rubber latex by reactive blending. Potassium persulfate was used as an initiator for graft copolymerization between the starch and natural rubber during baking. The starch–natural rubber graft copolymer (starch-g-NR copolymer) was successfully produced during both suspension and melt blending based on 1H-NMR and FTIR characterization. Natural rubber increased the flexural modulus of starch/natural rubber foams without potassium persulfate, thus indicating the compatibility of the blends. The starch-g-NR copolymer, acting as a compatibilizing agent, enhanced the impact strength of foams, but it did not improve the flexural modulus. This may be due to the potassium persulfate decreasing the molecular weight of the natural rubber. Relative humidity also played an important role on the mechanical properties. Foams became more ductile at higher relative humidities. Since foam density increased with an increasing natural rubber content, the specific impact strength was also considered. A soil burial test showed that the cassava starch foams and foams containing 15 pph of natural rubber were fully biodegraded within 8 and 18 weeks, respectively. The starch-g-NR copolymer delayed biodegradation of foams and foams containing high natural rubber content, i.e., 35 pph, showed a low ability to be biodegraded. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
References
- 1 Lourdin, D.; Valle, G. D.; Colonna, P. Carbohydr Polym 1995, 27, 261.
- 2 Shogren, R. L.; Lawton, J. W.; Doane, W. M.; Tiefenbacher, K. F. Polymer 1998, 39, 6649.
- 3 Lawton, J. W.; Shogren, R. L.; Tiefenbacher, K. F. Cereal Chem 1999, 76, 682.
- 4 Glenn, G. M.; Orts, W. J. Ind Crops Prod 2001, 13, 135.
- 5 Willett, J. L.; Shogren, R. L. Polymer 2002, 43, 5935.
- 6 Thuwall, M.; Boldizar, A.; Rigdahl, M. Carbohydr Polym 2006, 63, 441.
- 7 Bhathagar, S.; Hanna, M. A. Eng Process 1996, 73, 601.
- 8 Glenn, G. M.; Hsu, J. Ind Crops Prod 1997, 7, 37.
- 9 Zhou, J.; Song, J.; Parker, R. Carbohydr Polym 2006, 63, 466.
- 10 Tatarka, P. D.; Cunningham, R. L. J Appl Polym Sci 1996, 67, 1157.
- 11 Fang, Q.; Hanna, M. A. Ind Crops Prod 2001, 13, 219.
- 12 Arif, S.; Burgess, G.; Narayan, R.; Harte, B. Packag Techonol Sci 2007, 20, 413.
- 13 Pushpadass, H. A.; Babu, P. G.; Weber, R. W.; Hanna, M. A. Packag Techonol Sci 2008, 2, 171.
- 14 Bhathagar, S.; Hanna, M. A. Ind Crops Prod 1995, 4, 71.
- 15 Senna, M. M.; Yossef, A. M.; Hossom, F. M.; El-Naggar, A. W. J Appl Polym Sci 2007, 106, 3273.
- 16 Alfani, R.; Iannace, S.; Nicolais, L. J Appl Polym Sci 1998, 68, 739.
- 17 Cha, J. Y.; Chung, D. S.; Seib, P. A.; Flores, R. A.; Hanna, M. A. Ind Crops Prod 2001, 14, 23.
- 18 Xu, Y.; Hanna, M. A. Carbohydr Polym 2005, 59, 521.
- 19 Fang, Q.; Hanna, M. A. Bioresour Technol 2001, 78, 115.
- 20 Preechawong, D.; Peesan, M.; Supaphol, P.; Rujiravanit, R. Carbohydr Polym 2005, 59, 329.
- 21 Guan, J.; Eskridge, K. M.; Hanna, M. A. Ind Crops Prod 2005, 22, 109.
- 22 Ganjyal, G. M.; Weber, R.; Hanna, M. A. Bioresour Technol 2007, 98, 3176.
- 23 Zhang, J. F.; Sun, X. J Appl Polym Sci 2007, 106, 857.
- 24 Zhang, J. F.; Sun, X. J Appl Polym Sci 2007, 106, 3058.
- 25 Lee, S. Y.; Chen, H.; Hanna, M. A. Ind Crops Prod 2008, 28, 95.
- 26 Hao, A.; Geng, Y.; Xu, Q.; Lu, Z.; Yu, L. J Appl Polym Sci 2008, 109, 2679.
- 27 Preechawong, D.; Peesan, M.; Supaphol, P.; Rujiravanit, R. Polym Test 2004, 23, 651.
- 28 Shogren, R. L.; Lawton, J. W.; Doane, W. M.; Tiefenbacher, K. F. J Appl Polym Sci 1998, 68, 2129.
- 29 Lui, W. B.; Peng, J. Packag Technol Sci 2003, 16, 1.
- 30 Peng, J.; Wei, K.; Lui, W. Packag Technol Sci 2005, 18, 321.
- 31 Pimpa, B.; Muhammad, K.; Ghazali, Z.; Hashim, K.; Hassan, M. A.; Hashim, D. M. Carbohydr Polym 2007, 68, 751.
- 32 Kiatkamjornwong, S.; Surunchanajirasakul, P.; Tasakorn, P. Plast Rubber Compos 2001, 30, 318.
- 33 Shey, J.; Imam, S. H.; Glenn, G. M.; Orts, W. J. Ind Crops Prod 2006, 24, 34.
- 34 Carvalho, A. J. F.; Job, A. E.; Alves, N.; Curvelo, A. A. S.; Gandini, A. Carbohydr Polym 2003, 53, 95.
- 35 Patil, D. R.; Fanta, G. F. J Appl Polym Sci 1993, 47, 1765.
- 36 Lutfor, M. R.; Silong, S.; Yunus, W. M. Z. W.; Rahman, M. Z. A.; Ahmad, M.; Haron, M. J. J Appl Polym Sci 2000, 77, 784.
- 37 Liu, M.; Cheng, R.; Wu, J.; Ma, C. J. J Polym Sci Part A: Polym Chem 2003, 31, 3181.
- 38 Okieimen, F. E.; Egharevba, F.; Jideonwo, A. Acta Polym 1990, 41, 222.
- 39 Trimnell, D.; Swanson, C. L.; Shogren, R. L.; Fanta, G. F. J Appl Polym Sci 2003, 48, 1665.
- 40 Kaewtatip, K.; Tanrattanakul, V. Carbohydr Polym 2008, 73, 647.
- 41 Lutfor, M. R.; Sidik, S.; Yunus, W. M. Z. W.; Rahman, M. Z. A.; Mansor, A.; Haron, M. J. J Appl Polym Sci 2000, 79, 1256.
- 42 Zhang, L.; Gao, J.; Tian, R.; Yu, J.; Wang, W. J Appl Polym Sci 2003, 88, 146.
- 43 Singh, V.; Tiwari, A.; Pandey, S.; Singh, S. K. Starch—Stärke 2003, 58, 536.
- 44 Lu, S.; Yao, K.; Lin, S.; Cao, D.; Chen, Y. Starch—Stärke 2003, 55, 518.
- 45 Lu, S.; Lin, S.; Yao, K. Starch—Stärke 2004, 56, 138.
- 46 Graaf, R. A.; Janssen, L. P. B. M. Polym Eng Sci 2000, 40, 2086.
- 47 Oliverira, P. C.; Oliverira, A. M.; Garcia, A.; Souza Barboza, J. C.; Carvalho Zavaglia, C. A.; Santos, A. M. Eur Polym J 2005, 41, 1883.
- 48 Barikani, M.; Mohammadi, M. Carbohydr Polym 2007, 68, 773.
- 49 Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Zhang W.; Wang, P. Food Chem 2008, 106, 923.
- 50 Santos, K. A. M.; Suarez, P. A. Z.; Rubim, J. C. Polym Degrad Stab 2005, 90, 34.
- 51 Chandra, R.; Rusgi, R. Polym Degrad Stab 1997, 56, 185.
- 52 Tanrattanakul, V.; Sungthong, N.; Raksa, P. Polym Test 2008, 27, 794.
- 53 Tanrattanakul, V.; Panviriyarat, W. J Appl Polym Sci 2009, 114, 742.