Plasticized properties of poly (lactic acid) and triacetine blends
Corresponding Author
Jen-taut Yeh
Key Laboratory of Green Processing and Functional Textiles of New Textile Materials (Wuhan University of Science and Engineering), Ministry of Education, Wuhan, China
Faculty of Chemistry and Material Science, HuBei University, Wuhan, China
Department and Graduate School of Polymer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
Department and Graduate School of Polymer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan===Search for more papers by this authorChi-yuan Huang
Department of Materials Engineering, Tatung University, Taipei, Taiwan
Search for more papers by this authorWan-lan Chai
Department and Graduate School of Polymer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
Search for more papers by this authorKan-nan Chen
Department of Chemistry, Tamkang University, Tamsui, Taiwan
Search for more papers by this authorCorresponding Author
Jen-taut Yeh
Key Laboratory of Green Processing and Functional Textiles of New Textile Materials (Wuhan University of Science and Engineering), Ministry of Education, Wuhan, China
Faculty of Chemistry and Material Science, HuBei University, Wuhan, China
Department and Graduate School of Polymer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
Department and Graduate School of Polymer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan===Search for more papers by this authorChi-yuan Huang
Department of Materials Engineering, Tatung University, Taipei, Taiwan
Search for more papers by this authorWan-lan Chai
Department and Graduate School of Polymer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
Search for more papers by this authorKan-nan Chen
Department of Chemistry, Tamkang University, Tamsui, Taiwan
Search for more papers by this authorAbstract
Systematically investigations of the plasticizing effects of triacetine (TAc) on crystallization, chain mobility, microstructure, and tensile properties of the Poly (lactic acid)/triacetine (PLA/TAc) blends are reported. A new transition hump was observed on the tan δ curve of PLAxTAcy specimens at temperatures ranging from −80 to −20°C. Thermal, wide angle X-ray diffraction (WAXD) and dynamic mechanical analysis properties of PLA and PLAxTAcy series specimens suggest that PLA and PLAxTAcy series specimens can hardly crystallize by cooling the melt in room temperature. However, significant recrystallization of α form PLA crystals was found during the annealing processes of PLAxTAcy series specimens. Some “less perfect” β form PLA crystals were found as the TAc contents of PLAxTAcy specimens reach 30 wt %. Further morphological analysis show that the inherent brittle deformation behavior of the PLA specimen was successfully transformed into relatively ductile fracture behavior after blending sufficient but optimum amounts of TAc in PLA resins. Possible reasons accounting for this interesting recrystallization, thermal, microstructure and tensile properties of PLAxTAcy specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
References
- 1 Lipinsky, E. S.;Sinclair, R. G. Chem Eng Prog 1986, 82, 26.
- 2 Rafael, A.;Bruce, H.;Susan, S. Macromol Biosci 2004, 4, 835.
- 3 Rashkov, I.;Manolova, N.;Li, S. M.;Espartero, J. L.;Vert, M. Macromolecules 1996, 29, 50.
- 4 Chen, X. H.;McCarthy, S. P.;Gross, R. A. Macromolecules 1997, 30, 4295.
- 5 Maglio, G.;Migliozzi, A.;Palumbo, R. Polymer 2003, 44, 369.
- 6 Chon, D.;Hotovely-Salomon, A. Polymer 2005, 46, 2068.
- 7 Choi, N. S.;Kim, C. H.;Cho, K. Y.;Park, J. K. J Appl Polym Sci 2002, 86, 1892.
- 8 Na, Y. H.;He, Y.;Shuai, X.;Kikkawa, Y.;Doi, Y.;Inoue, Y. Biomacromolecules 2002, 3, 1179.
- 9 Blumm, E.;Owen, A. J. Polymer 1995, 36, 4077.
- 10 Zhang, L. L.;Deng, X. M.;Zhao, S. J.;Huang, Z. T. J Appl Polym Sci 1997, 65, 1849.
- 11 Focarete, M. L.;Scandola, M.;Dobrzynski, P.;Kowalczuk, M. Macromolecules 2002, 35, 8472.
- 12 Zhang, L. L.;Xiong, C. D.;Deng, X. M. Polymer 1996, 37, 235.
- 13 Nijenhuis, A. J.;Colstee, E.;Grijpma, D. W.;Pennings, A. J. Polymer 1996, 37, 5849.
- 14 Wang, L.;Ma, W.;Gross, R. A.;McCarthy, S. P. Polym Degrad Stab 1998, 59, 161.
- 15 Dell'Erba, R.;Groeninckx, G.;Maglio, G.;Malinconico, M.;Migliozzi, A. Polymer 2001, 42, 7831.
- 16 Chen, C. C.;Chueh, J. Y.;Tseng, H.;Huang, H. M.;Lee, S. Y. Biomaterials 2003, 24, 2297.
- 17 Gajria, A. M.;Davé, V.;Gross, R. A.;McCarthy, S. P. Polymer 1996, 37, 437.
- 18 Koyama, N.;Doi, Y. Polymer 1997, 38, 1589.
- 19 Ohkoshi, I.;Abe, H.;Doi, Y. Polymer 2000, 41, 5985.
- 20 Park, J. W.;Im, S. S. J Polym Sci Part B: Polym Phys 2002, 40, 1931.
- 21 Park, J. W.;Im, S. S. J Appl Polym Sci 2002, 86, 647.
- 22 Martin, O.;Avérous, L. Polymer 2001, 42, 6209.
- 23 Sheth, M.;Kumar, A.;Davé, V.;Gross, R. A.;McCarthy, S. P. J Appl Polym Sci 1997, 66, 1495.
- 24 Hu, Y.;Hu, Y. S.;Topolkaraev, V.;Hiltner, A.;Baer, E. Polymer 2003, 44, 5681.
- 25 Hu, Y.;Rogunova, M.;Topolkaraev, V.;Hiltner, A.;Baer, E. Polymer 2003, 44, 5701.
- 26 Hu, Y.;Hu, Y. S.;Topolkaraev, V.;Hiltner, A.;Baer, E. Polymer 2003, 44, 5711.
- 27 Kulinski, Z.;Piorkowska, E. Polymer 2005, 46, 10290.
- 28 Baiardo, M.;Frisoni, G.;Scandola, M.;Rimelen, M.;Lips, D.;Ruffieux, K.;Wintermantel, E. J Appl Polym Sci 2003, 90, 1731.
- 29 Labrecque, L. V.;Kumar, R. A.;Davé, V.;Gross, R. A.;McCarthy, S. P. J Appl Polym Sci 1997, 66, 1507.
- 30 Ljungberg, N.;Wesslén, B. J Appl Polym Sci 2002, 86, 1227.
- 31 Ljungberg, N.;Wesslén, B. Polymer 2003, 44, 7679.
- 32 Ljungberg, N.;Andersson, T.;Wesslén, B. J Appl Polym Sci 2003, 88, 3239.
- 33 Ljungberg, N.;Wesslén, B. J Appl Polym Sci 2004, 94, 2140.
- 34 Ljungberg, N.;Wesslén, B. Biomacromolecules 2005, 6, 1789.
- 35 Jacobsen, S.;Fritz, H. G. Polym Eng Sci 1999, 39, 1303.
- 36 Zhang, J. F.;Sun, X. Polym Int 2004, 53, 716.
- 37 DeSantis, P.;Kovacs, A. J. Biopolym 1968, 6, 299.
- 38 Eling, B.;Gogolewski, S.;Pennings, A. J. Polym 1982, 23, 1587.
- 39 Saha, S. K.;Tsuji, H. Polym Degrad Stab 2006, 91, 1665.
- 40 Grijpma, D. W.;Zondervan, G. J.;Pennings, A. J. Polym Bulletin 1991, 25, 327.
- 41
Zhong, W.;Ge, J.;Gu, Z.;Li, W.;Chen, X.;Zang, Y.;Yang, Y.
J Appl Polym Sci
1999,
74,
2546.
10.1002/(SICI)1097-4628(19991205)74:10<2546::AID-APP24>3.0.CO;2-Z CAS Web of Science® Google Scholar
- 42 Solarski, S.;Ferreira, M.;Devaux, E. Polymer 2005, 46, 11187.
- 43 Hoogsten, W.;Postema, A. R.;Pennings, A. J.;Brinke, G.;Zugenmaier, P. Macromolecules 1990, 23, 634.
- 44 Kalb, B.;Pennings, A. J. Polymer 1980, 21, 607.
- 45 Miyata, T.;Masuko, T. Polymer 1997, 38, 4003.
- 46 Munehisa, Y.;Shinsuke, T.;Koji, I.;Yoshinori, O.;Yusuke, D.;Kazuhisa, T. Polymer 2006, 47, 7554.
- 47 Puiggali, J.;Ikada, Y.;Tsuji, H.;Cartier, L.;Okihare, T.;Lotz, B. Polymer 2000, 41, 8921.
- 48 Okihara, T.;Okumura, K.;Kawaguchi, A. J Marcomol Sci Phys 2003, B42, 875.
- 49 Migliaresi, C.;Cohn, D.;Lollis, A. D.;Fambri, L. J Appl Polym Sci 1991, 43, 83.