In situ Fourier transform infrared spectroscopic study of the conformational changes of high-density poly(ethylene) during the melting and crystallization processes
Yan Xiao
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorLiangyu Yan
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorPuming Zhang
Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
Search for more papers by this authorNa Zhu
Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
Search for more papers by this authorLiang Chen
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorPeng He
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorYanping Wang
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
State Key Laboratory for Modification of Chemical Fiber and Materials, Donghua University, Shanghai 200051, People's Republic of China
Search for more papers by this authorXinyuan Shen
State Key Laboratory for Modification of Chemical Fiber and Materials, Donghua University, Shanghai 200051, People's Republic of China
Search for more papers by this authorCorresponding Author
Xinyuan Zhu
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China===Search for more papers by this authorDeyue Yan
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorYan Xiao
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorLiangyu Yan
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorPuming Zhang
Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
Search for more papers by this authorNa Zhu
Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
Search for more papers by this authorLiang Chen
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorPeng He
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorYanping Wang
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
State Key Laboratory for Modification of Chemical Fiber and Materials, Donghua University, Shanghai 200051, People's Republic of China
Search for more papers by this authorXinyuan Shen
State Key Laboratory for Modification of Chemical Fiber and Materials, Donghua University, Shanghai 200051, People's Republic of China
Search for more papers by this authorCorresponding Author
Xinyuan Zhu
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China===Search for more papers by this authorDeyue Yan
The State Key Laboratory of Metal Matrix Composites, College of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Search for more papers by this authorAbstract
The conformational analysis of high-density poly(ethylene) (HDPE) during the melting and crystallization processes has been performed by the aid of the time-reserved Fourier transform infrared spectroscopy and multivariate analysis technique. Upon heating, the conformational transition of HDPE takes place, gradually, due to the restraint of crystal lattice, and various conformational transformations can be discerned clearly. However, during the cooling process, HDPE crystallizes very quickly and only one major conformational transition occurs in the crystallization process. The comparison of conformational changes during the melting and crystallization processes exhibits that although the polymer crystallization is the reverse process of polymer melting, there still exist some obvious differences in the conformational transformation between them. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4835–4841, 2006
References
- 1 Keller, A. Philos Mag 1957, 2, 1171.
- 2 Till, P. H. J Polym Sci 1957, 24, 30.
- 3
Fisher, E. W.
Kolloidn Zh
1958,
159,
108.
10.1007/BF01520189 Google Scholar
- 4 Hoffman, J. D.; Miller, R. L. Polymer 1997, 38, 3151.
- 5 Wunderlich, B.; Metha, A. J Phys Chem B 1974, 12, 255.
- 6 Sadler, D. M. Nature 1987, 326, 174.
- 7 Imai, M.; Kaji, K.; Kanaya, T. Macromolecules 1994, 27, 7103.
- 8 Strobl, G. Eur Phys J E 2000, 3, 165.
- 9 Stein, R. S.; Norris, F. H. J Polym Sci 1956, 21, 381.
- 10 Stroble, G.; Ewen, B.; Fischer, E. W.; Piesczck, W. J Chem Phys 1974, 61, 5257.
- 11 Liang, C. Y.; Krimm, S.; Sutherland, G. B. B. M. J Chem Phys 1956, 25, 543.
- 12 Tashiro, K.; Sasaki, S. Prog Polym Sci 2003, 28, 451.
- 13 Okada, T.; Mandelkern, L. J Polym Sci 1967, 5, 239.
- 14 Snyder, R. G. J Chem Phys 1967, 47, 1316.
- 15 Schultz, J. M. J Polym Sci Polym Phys Ed 1976, 14, 2291.
- 16 Strobl, G.; Schneider, M. Macromolecules 1980, 18, 1343.
- 17 Hikosaka, M.; Rastogi, S.; Keller, A.; Kawabata, H. J Macromol Sci Phys 1992, 31, 87.
- 18 Snyder, R. G.; Maroncelli, M.; Qi, S. P.; Strauss, H. L. Science 1981, 214, 188.
- 19 Maroncelli, M.; Qi, S. P.; Strauss, H. L.; Snyder, R. G. J Am Chem Soc 1982, 104, 6237.
- 20 Hagemann, H.; Strauss, H. L.; Snyder, R. G. Macromolecules 1987, 20, 2810.
- 21
Koenig, J. L.
Probing Polymer Structures;
American Chemical Society:
Washington, DC,
1979; p
104.
10.1021/ba-1979-0174 Google Scholar
- 22 Tashiro, K.; Sasaki, S.; Gose, N.; Kobayashi, M. Polym J 1998, 30, 485.
- 23 Tashiro, K.; Stein, R. S.; Hsu, S. L. Macromolecules 1992, 25, 1801.
- 24
Zhu, X. Y.;
Yan, D. Y.;
Yao, H. X.;
Zhu, P. F.
Macromol Rapid Commun
2000,
21,
354.
10.1002/(SICI)1521-3927(20000401)21:7<354::AID-MARC354>3.0.CO;2-B CAS Web of Science® Google Scholar
- 25 Zhu, X. Y.; Yan, D. Y.; Fang, Y. P. J Phys Chem B 2001, 105, 12461.
- 26 Zhu, X. Y.; Yan, D. Y.; Fang, Y. P.; Chen, L. Appl Spectrosc 2003, 57, 104.
- 27 Zhu, X. Y.; Fang, Y. P.; Yan, D. Y. Polymer 2001, 42, 8595.
- 28 Zhu, X. Y.; Li, Y. J.; Yan, D. Y.; Lu, Q. H.; Zhu, P. F. Colloid Polym Sci 2001, 279, 292.
- 29 Zhu, X. Y.; Fang, Y. P.; Li, Y. J.; Yan, D. Y.; Zhu, P. F.; Lu, Q. H. Chem J Chin Univ 2001, 22, 1425.
- 30 Kobayashi, M.; Akita, K.; Tadokoro, H. Makromol Chem 1968, 118, 324.
- 31
Zerbi, G.;
Ciampelli, F.;
Zamboni, V.
J Polym Sci Part C: Polym Symp
1964,
7,
141.
10.1002/polc.5070070110 Google Scholar
- 32 Xiao, Y.; Zhu, X. Y.; Chen, L.; He, P.; Yan, D. Y.; Wang, X. A. J Polym Sci Part B: Polym Phys 2004, 42, 60.
- 33 Hagemann, H.; Snyder, R. G.; Peacock, A. J.; Mandeldern, L. Macromolecules 1989, 22, 3600.
- 34 Painter, P. C.; Havens, J.; Hart, W. W.; Koenig, J. L. J Polym Sci Polym Phys Ed 1977, 15, 1237.
- 35 Androsch, R.; Kolesov, I.; Radusch, H.-J. J Therm Anal Cal 2003, 73, 59.
- 36 Ozzetti, R. A.; Pedro de Oliveira Filho, A.; Schuchardt, U.; Mandelli, D. J Appl Polym Sci 2002, 85, 734.
- 37 Martens, H.; Naes, T. Multivariate Calibration; Wiley: Chichester, UK, 1998.
- 38 Hamerton, I.; Hay, J. N.; Herman, H.; Howlin, B. J.; Jepson, P.; Gillies, D. G. J Appl Polym Sci 2002, 84, 2411.
- 39 He, P.; Xiao, Y.; Zhang, P. M.; Zhu, N.; Zhu, X. Y.; Yan, D. Y. Appl Spectrosc 2005, 59, 33.
- 40 He, P.; Xiao, Y.; Zhang, P. M.; Xing, C. H.; Zhu, N.; Zhu, X. Y.; Yan, D. Y. Polym Degrad Stab 2005, 88, 473.
- 41 Zhu, X. Y.; Yan, D. Y. Macromol Chem Phys 2001, 202, 1109.
- 42 Zhang, F.; Qiu, W.; Yang, L.; Endo, T.; Hirotsu, T. J Appl Polym Sci 2003, 89, 3292.
- 43 Huang, Z.; Marand, H.; Cheung, W. Y.; Guest, M. Macromolecules 2004, 37, 9922.
- 44 Tashiro, K.; Gose, N. Polymer 2001, 42, 8987.