Sorption and transport of CO2 in poly(ethylene terephthalate) crystallized by sorption of high-pressure CO2
Abstract
Sorption and permeation of CO2 in poly(ethylene terephthalate) crystallized by sorption of high-pressure CO2 were examined below 1 atm at temperatures from 15 to 65°C. A large solubility and a high permeability of CO2 in this specimen were observed compared to poly(ethylene terephthalate) crystallized by thermal annealing to a similar degree. A large unrelaxed volume is expected to be left in the specimen after removal of high-pressure CO2 compared to the data of other PET samples. The thermal history during the measurements up to 65°C, which causes relaxation of the specimen, was shown to decrease CO2 solubility. On the other hand, permeation data after annealing show not only decreased permeability but also increased apparent diffusivity. The results mean a lower mobility of gases sorbed in the unrelaxed volume than that of ordinarily dissolved gases, which corresponds to the partial immobilization model.