Adsorption decolorization and composition analysis of high melting point Fischer–Tropsch waxes
Chenguang Jiang
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Search for more papers by this authorCorresponding Author
Shengzhen Zhang
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Correspondence
Shengzhen Zhang and Cuiqing Zhang, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Cuiqing Zhang
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Correspondence
Shengzhen Zhang and Cuiqing Zhang, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China.
Email: [email protected] and [email protected]
Search for more papers by this authorXiaofeng Li
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Search for more papers by this authorYi Guo
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Search for more papers by this authorChenguang Jiang
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Search for more papers by this authorCorresponding Author
Shengzhen Zhang
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Correspondence
Shengzhen Zhang and Cuiqing Zhang, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Cuiqing Zhang
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Correspondence
Shengzhen Zhang and Cuiqing Zhang, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China.
Email: [email protected] and [email protected]
Search for more papers by this authorXiaofeng Li
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Search for more papers by this authorYi Guo
National Institute of Clean-and-Low-Carbon Energy, Beijing, China
Search for more papers by this authorAbstract
The decolorization and quality improvement of the high melting point Fischer–Tropsch wax were carried out by the method of adsorption refining, and the activated clay was selected as adsorbent. The effects of adsorption decolorization temperature on the wax products were evaluated by testing the saybolt color number and whiteness value of the waxes. Meanwhile, the influence of adsorption decolorization temperature on the composition of waxes was investigated by gas chromatography (GC), inductively coupled plasma (ICP), thermogravimetry/differential thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), thermogravimetric mass spectrometry (TG-MS), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and X-ray fluorescence (XRF) characterizations of waxes and adsorbents activated clay before and after use. The results showed that the best adsorption decolorization temperature is 120°C, and the corresponding saybolt color number of decolorization waxes is +16. The reasons for the poor chromaticity of high melting point wax are not only the inorganic components mainly composed of residual ultrafine catalyst particles but also the organic components of unsaturated carbon–carbon double bonds and heteroatomic compounds containing oxygen, nitrogen, and sulfur. The oxidative deterioration of the unsaturated carbon–carbon double bond and hydrocarbons with low bond energy in waxes, as well as the oxidation of hydrocarbons containing oxygen and nitrogen heteroatoms, may be the main reasons for the yellowing of the wax products in the process of decolorization.
CONFLICTS OF INTEREST
There are no conflicts of interest to declare.
Supporting Information
Filename | Description |
---|---|
apj2857-sup-0001-Supplmentary materials.docxWord 2007 document , 11.8 KB |
Table S1. Elemental analysis of 110# raw wax |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Li J, Tian Y, Yan X, et al. Approach and potential of replacing oil and nature gas with coal in China[J]. Front Energy. 2020; 2: 419-431.
10.1007/s11708-020-0802-0 Google Scholar
- 2Krylova AY. Products of the Fischer-Tropsch synthesis (a review) [J]. Solid Fuel Chem. 2014; 48(1): 22-35. doi:10.3103/S0361521914010030
- 3Peng Z, Yinwen L, Meng W, et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route[J]. Chem. 2021; 7(11): 3027-3051. doi:10.1016/j.chempr.2021.08.019
- 4Din I, Mir MS. Experimental investigation of low viscosity grade binder modified with Fischer Tropsch-Paraffin wax[J]. Int J Pavement Res Technol. 2021; 14(2): 129-137. doi:10.1007/s42947-020-0286-7
10.1007/s42947?020?0286?7 Google Scholar
- 5Gruber H, Lindner L, Arlt S, Reichhold A, Hofbauer H. A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application[J]. J Clean Prod. 2020; 275:124135. doi:10.1016/j.jclepro.2020.124135
- 6Mochane MJ, Luyt AS. The effect of expanded graphite on the flammability and thermal conductivity properties of phase change material based on PP/wax blends[J]. Polym Bull. 2015; 72(9): 2263-2283. doi:10.1007/s00289-015-1401-9
- 7Iwański M, Cholewińska M, Goreczna A. Influence of aging on the properties of F-T wax modified roadway bitumen [J]. Struct Environ. 2017; 9(2): 89-101.
- 8Yang R, Zhou L, Junhu Gao X, Hao BW, Yang Y, Li Y. Effects of experimental operations on the Fischer-Tropsch product distribution[J]. Catalysis Today. 2017; 298: 77-88. doi:10.1016/j.cattod.2017.05.056
- 9Wolfmeier U, Schmidt H, Heinrichs F, et al. Ullmann's encyclopedia of industrial chemistry[J]. Waxes. 2010; 39: 112-172.
- 10Dongyang L, Weiwei S, Zubin C, Dongyun H, Chuanyang C. Study of processing Fischer-Tropsch waxes by vacuum distillation and extraction refining[J]. Pet Process Petrochemical Technol. 2019; 50(1): 69-72.
- 11Gupta AK, Agrawal KM. Fractionation and characterization of waxes[J]. Petrol Sci Technol. 2006; 24(1): 1-6. doi:10.1081/LFT-200044340
- 12Zhang J, Feng Z, Jia X, Shuangqing X. The characteristics of a pressurized gas-solid magnetically fluidized bed[J]. Chem Eng Technol. 2013; 36(2): 241-250. doi:10.1002/ceat.201200491
- 13Suo JC, Shen F. Refining petroleum wax by using compound adsorption agent[P]. CN1161367, 1997-10-08.
- 14Khakdaman HR, Sadaghiani K. Separation of catalyst particles and wax from effluent of a Fischer–Tropsch slurry reactor using supercritical hexane[J]. Chem Eng Res des. 2007; 85(2): 263-268. doi:10.1205/cherd06034
- 15Zhou PZ. Coalescence enhanced gravity separation of iron catalyst from Fischer-Tropsch catalyst/wax slurry[P]. US 6476086B1. 2002.
- 16Donato L, Drioli E. Imprinted membranes for sustainable separation processes[J]. Front Chem Sci Eng. 2021; 15(4): 775-792. doi:10.1007/s11705-020-1991-0
- 17Lin T, Xuan M, Shi L. Evaluation of laboratory methods for the acquisition of catalyst from Fischer-Tropsch wax/catalyst mixtures[J]. Ind Eng Chem Res. 2012; 51(44): 14511-14516. doi:10.1021/ie301535e
- 18Zhang R. Adsorption Refining Process of Phase Change Paraffin and Lubricating Oil [D]. South China University of Technology; 2011: 38-41.
- 19Yongjuan W. Study on the Oxidation and Decolorization Process of Polyethylene Wax Solvent [D]. Beijing Institute of Petrochemical Technology; 2016: 55-56.
- 20Lourens J, Reynhardt EC. NMR investigation of Fischer-Tropsch waxes[J]. J Phys D Appl Phys. 1979; 12(11): 1963-1972. doi:10.1088/0022-3727/12/11/024
- 21Reynhardt EC. NMR investigation of Fischer-Tropsch waxes. III. 13C and 1H study of oxidised hard wax [J]. J Phys D Appl Phys. 1985; 18(12): 2519-2528. doi:10.1088/0022-3727/18/12/020
- 22Agrawal KM, Joshi GC. Studies on the composition of some distillate waxes[J]. J Appl Chem Biotechnol. 1978; 28: 718-720.
- 23Luan JN, Li GL, Shi L. Study of modified clay and its industrial testing in aromatic refining[J]. Ind Eng Chem Res. 2011; 50(12): 7150-7154. doi:10.1021/ie200147x
- 24Johanners DR. Studies on the Composition of Thermally Oxidized Fischer-Tropsch Waxes[D]. South Africa: The University of Cape Town; 1998: 7-11.
- 25Zheng L, Sheng K, Pan J. Production and Deep Processing of b Wax[M]. Chemical Industry Press; 2008: 40-42.
- 26Drozdova TI, Petrov LV, Solyanikov VM. Role of isoparaffins in oxidation of n-paraffins to fatty acids[J]. Petrol Chem U S S R. 1981; 21(2): 89-94. doi:10.1016/0031-6458(81)90043-5
10.1016/0031?6458(81)90043?5 Google Scholar
- 27Mishra N, Patra N, Pandey S, Marco S, Madhuri S, Maheshwar S. Taguchi method optimization of wax production from pyrolysis of waste polypropylene[J]. J Therm Anal Calorim. 2014; 117(2): 885-892. doi:10.1007/s10973-014-3793-4
- 28Pigłowska M, Kurc B, Rymaniak Ł, Lijewski P, Fuć P. Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O content on the surface by TG/DTG-DTA[J]. Polymers. 2020; 12(2): 357-370. doi:10.3390/polym12020357
- 29Danilovas PP, Rutkaite R, Zemaitaitis A. Thermal degradation and stability of cationic starches and their complexes with iodine[J]. Carbohydr Polym. 2014; 112: 721-728. doi:10.1016/j.carbpol.2014.06.038
- 30Zhao Y, Paso K, Norrman J, Ali G, Sørland G, Johan S. Utilization of DSC, NIR, and NMR for wax appearance temperature and chemical additive performance characterization[J]. J Therm Anal Calorim. 2015; 120(2): 1-7. doi:10.1007/s10973-015-4451-1
- 31Hwang H-S, Winkler-Moser JK. Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax [J]. J Food Sci. 2020; 85: 3293-3302.
- 32Petersson M, Gustafson I. Comparison of microstructural and physical properties of two petroleum waxes[J]. J Mater Sci. 2008; 43(6): 1869-1879. doi:10.1007/s10853-007-2417-9
- 33Marinho TO, Oliveira M, Nele M. An experimental investigation of rheology and crystal morphology of model waxy oils under gelling conditions[J]. Energy Fuel. 2019; 33(10): 9604-9618. doi:10.1021/acs.energyfuels.9b01972
- 34Taheri-Shakib J, Shekarifard A, Naderi H. Characterization of the wax precipitation in Iranian crude oil based on WAT: part I. The influence of electromagnetic waves[J]. J Petrol Sci Eng. 2018; 161: 530-540. doi:10.1016/j.petrol.2017.12.012
- 35Farid S, Berlinda O, Mengistie Endalkachew M, Alayat Abdulbaset G, Armando MD. Catalytic upgrading of pyrolysis wax oil obtained from waxed corrugated cardboard using zeolite Y catalyst[J]. Energy Fuel. 2021; 35(1): 9450-9461.
- 36Bo T, Xu Bin H, Mingming YX, Kunliang C, Cheng X. FTIR quantitative analysis of surface functional groups in the oxidation process of coal samples with different metamorphic levels[J]. J Cent South Univ Technol. 2019; 50(11): 2886-2895.
- 37Snyder RG, Maroncelli M, Strauss HL. Temperature and phase behavior of infrared intensities: the poly (methylene) chain[J]. J Phys Chem. 1986; 94720: 5623-5630.
10.1021/j100280a030 Google Scholar
- 38Robertson D, Reenen AV, Duveskog H. A comprehensive investigation into the structure-property relationship of wax and how it influences the properties of hot melt adhesives[J]. Int J Adhes Adhes. 2020; 99:102559. doi:10.1016/j.ijadhadh.2020.102559
- 39Paul Ratnasamy KS, Gupta DC. Structure and properties of microcrystalline waxes[J]. J Appl Chem Biotechnol. 1973; 23(3): 183-187. doi:10.1002/jctb.5020230304
10.1002/jctb.5020230304 Google Scholar
- 40Speight RJ, Rourke JP, Wong A, Barrow NS, Bishop PR, Smith ME. 1H and 13C solution- and solid-state NMR investigation into wax products from the Fischer-Tropsch process.[J]. Solid State Nucl Magn Reson. 2011; 39(3–4): 58-64. doi:10.1016/j.ssnmr.2011.03.008
- 41Da Silva K, Santana MI, Tavares B. Characterization of flaxseed oil for nuclear magnetic resonance and its encapsulation[J]. Mater Scie App. 2022; 13(5): 27-299. doi:10.4236/msa.2022.135015
10.4236/msa.2022.135015 Google Scholar
- 42Behera B, Ray SS, Singh ID. Structural characterization of FCC feeds from Indian refineries by NMR spectroscopy[J]. Fuel. 2008; 87(10-11): 2322-2333. doi:10.1016/j.fuel.2008.01.001
- 43Barison A, Pereira CW, da Silva F, et al. A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy [J]. Magn Reson Chem. 2010; 48(8): 642-650. doi:10.1002/mrc.2629
- 44Kasprzok L, Boussert S, Rivera J, Cretté S. Case study: characterization of 19th century candles from maritime archaeological environments with FTIR, NMR, and GC–MS[J]. J Archaeol Sci Rep. 2021; 35:102711. doi:10.1016/j.jasrep.2020.102711
- 45Wenhao X, Jianli H, Jingyong L, et al. Assessing thermal behaviors and kinetics of (co-)combustion of textile dyeing sludge and sugarcane bagasse[J]. Appl Therm Eng. 2018; 131: 874-883.
- 46Bai H, Mao N, Wang R, Li Z, Zhu M, Wang Q. Kinetic characteristics and reactive behaviors of HSW vitrinite coal pyrolysis: a comprehensive analysis based on TG-MS experiments, kinetics models and ReaxFF MD simulations—ScienceDirect[J]. Energy Rep. 2021; 7: 1416-1435. doi:10.1016/j.egyr.2021.09.100
- 47Youxin X, Yiren W, Jincan H, et al. Study on the mechanism and kinetics of waste polypropylene cracking oxidation over the Mn2O3/HY catalyst by TG–MS and in situ FTIR[J]. Ind Eng Chem Res. 2020; 59(38): 16569-16578. doi:10.1021/acs.iecr.0c02678
- 48Xianchao L, Huacai L, Yanqin H, et al. Synergistic effects on co-pyrolysis of low-temperature hydrothermally pretreated high-protein microalgae and polypropylene[J]. Energ Conver Manage. 2021; 229(1–2):113772.
- 49Yinxuan F, Que Z, Shi J, Ai X, Zou W. Thermal behavior and gas products of cold rolling oily sludge by TG-MS and Py-EGA/MS[J]. Energy Rep. 2022; 8: 763-773. doi:10.1016/j.egyr.2022.02.012
- 50Zhang Y, Zegang F, Wang W, Ji G, Zhao M, Li A. Kinetic, product evolution, and mechanism for the pyrolysis of typical plastic waste[J]. ACS Sustain Chem Eng. 2022; 10(1): 91-103. doi:10.1021/acssuschemeng.1c04915
- 51Linbo Q, Jun H, Bo Z, Wang Y, Wangsheng C, Futang X. Thermal degradation of medical plastic waste by in-situ FTIR, TG-MS and TG-GC/MS coupled analyses[J]. J Anal Appl Pyrolysis. 2018; 136: 132-145. doi:10.1016/j.jaap.2018.10.012
- 52Qing L, Peng Liu X, Xiang Z, Zhixiang H, Qian W. Bio-fuel oil characteristic of rice bran wax pyrolysis[J]. Renew Energy. 2017; 119: 193-202.
- 53Mengna Y, Hongjuan S, Tongjiang P, Yanhong X. Preparation and properties of activated clay by low-temperature calcination at atmospheric pressure[J]. J Chin Soc. 2019; 47(4): 578-584.
- 54Ural N. The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: an overview[J]. Open Geosci. 2021; 13(1): 197-218. doi:10.1515/geo-2020-0145