Copper Schiff base complex immobilized on magnetic graphene oxide: Efficient heterogeneous nanocatalyst for treating environmental pollutants and synthesis of chromenes
Mahshid Sheikh Dastjerdy
Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal)
Search for more papers by this authorCorresponding Author
Niaz Monadi
Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
Correspondence
Niaz Monadi, Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box, 47416-95447, Babolsar, Iran.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (lead), Project administration (lead), Resources (lead), Validation (lead), Visualization (lead)
Search for more papers by this authorMahshid Sheikh Dastjerdy
Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal)
Search for more papers by this authorCorresponding Author
Niaz Monadi
Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
Correspondence
Niaz Monadi, Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box, 47416-95447, Babolsar, Iran.
Email: [email protected]
Contribution: Conceptualization (lead), Data curation (equal), Formal analysis (equal), Investigation (equal), Methodology (lead), Project administration (lead), Resources (lead), Validation (lead), Visualization (lead)
Search for more papers by this authorFunding information: University of Mazandaran Research Councils
Abstract
Herein, a new Cu(II) Schiff base complex was immobilized onto the magnetic graphene oxide surface through a stepwise procedure. The as-synthesized nanostructure (GO/Fe3O4/CuL) was characterized by various techniques including Fourier transform infrared (FT-IR), Raman spectroscopies, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), energy-dispersive X-ray (EDX) and inductively coupled plasma (ICP) spectroscopies, N2 adsorption–desorption analysis, vibrating sample magnetometry (VSM), and X-ray diffraction (XRD). The catalytic activity of the synthesized nanocatalyst was examined in 4-nitrophenol (4-NP), Congo red (CR), and methylene blue (MB) reduction using NaBH4 in an aqueous solution at room temperature. The reaction progress was monitored by UV–Vis spectroscopy. Also, the synthesized nanostructure was evaluated as an efficient catalyst for the synthesis of 2-amino-4H-benzopyrans via three-component reactions of 1-naphthol, malononitrile, and various aldehydes in ethanol/water at 50°C. The use of green solvents, the short reaction time, the high product yield, and easy separation from the reaction environment are the main benefits of this catalytic system. By covalent grafting of the complex on the graphene oxide surface, its catalytic performance significantly increased compared with graphene oxide; this is probably related to the chemical change of the graphene oxide surface. The results show the high chemical stability and the improved reusability of the synthesized nanocatalyst (six times) without significant loss in the catalytic activity of GO/Fe3O4/CuL nanocomposite.
CONFLICTS OF INTEREST
There are no conflicts of interest with this research work.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the finding of this study are openly available in references.
Supporting Information
Filename | Description |
---|---|
aoc6931-sup-0001-Supplementy.docWord document, 8 MB |
Fig. S1. FT-IR spectra of GO/Fe3O4/CuL and recycled GO/Fe3O4/CuL Figure S2. N2 adsorption/desorption isotherms of recycled GO/Fe3O4 /CuL. Figure S3: FT-IR spectrum of 2-Amino-4H-benzo[h]chromene-3-carbonitrile Figure S4. FT-IR spectrum of 2-Amino-4-(2-chlorophenyl)-4H-benzo[h]chromene-3-carbonitrile Figure S5: FT-IR spectrum of 2-Amino-4-(4-chlorophenyl)-4H-benzo[h]chromene-3-carbonitrile Figure S6: FT-IR spectrum of 2-Amino-4-(4-nitrophenyl)-4H-benzo[h]chromene-3-carbonitrile Figure S7: FT-IR spectrum of 2-Amino-4-(3-nitrophenyl)-4H-benzo[h]chromene-3-carbonitrile Figure S8: FT-IR spectrum of 2-Amino-4-(4-methylphenyl)-4H-benzo[h]chromene-3-carbonitrile Figure S9: FT-IR spectrum of 2-Amino-4-(4-hydroxyphenyl)-4H-benzo[h]chromene-3-carbonitrile Figure S10: FT-IR spectrum of 2-Amino-4-(2-hydroxyphenyl)-4H-benzo[h]chromene-3-carbonitrile Figure S11. 1H NMR spectrum of 2-Amino-4-(4-chlorophenyl)-4H-benzo[h]chromene-3-carbonitrile in CDCl3 Figure S12. 13C NMR spectrum of 2-Amino-4-(4-chlorophenyl)-4H-benzo[h]chromene-3-carbonitrile in CDCl3 Figure S13. 1H NMR spectrum of 2-Amino-4-(2-chlorophenyl)-4H-benzo[h]chromene-3-carbonitrile in CDCl3 Figure S14. 1H NMR spectrum of 2-Amino-4-(4-nitrophenyl)-4H-benzo[h]chromene-3-carbonitrile in CDCl3 Figure S15. 1H NMR spectrum of 2-Amino-4-(3-nitrophenyl)-4H-benzo[h]chromene-3-carbonitrile in CDCl3 Figure S16: 1H NMR spectrum 2-Amino-4-(2-hydroxy)-4H-benzo[h]chromene-3-carbonitrile in DMSO Figure S17: 13CNMR spectra of 2-Amino-4-(2-hydroxy)-4H-benzo[h]chromene-3-carbonitrile in DMSO |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. Rezayati, F. Kalantari, A. Ramazani, S. Sajjadifar, H. Aghahosseini, A. Rezaei, Inorg. Chem. 2021, 61(2), 992.
- 2X. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 2018, 1(6), 385.
- 3F. Kalantari, A. Ramazani, M. R. Poor Heravi, H. Aghahosseini, K. Slepokura, Inorg. Chem. 2021, 60(19), 15010.
- 4S. Rezayati, A. Ramazani, S. Sajjadifar, H. Aghahosseini, A. Rezaei, ACS Omega 2021, 6(39), 25608.
- 5F. Kalantari, S. Rezayati, A. Ramazani, H. Aghahosseini, K. Ślepokura, T. Lis, ACS Appl. Nano Mater. 2022, 5(2), 1783.
- 6I. Ali, A. A. Al-Arfaj, T. A. Saleh, J. Mol. Liq. 2020, 304, 112376.
- 7A. Omidvar, B. Jaleh, M. Nasrollahzadeh, J. Colloid Interface Sci. 2017, 496, 44.
- 8X. Fan, G. Zhang, & F. Zhang, (2015). Chem. Soc. Rev. 2015, 44(10), 3023.
- 9M. Eftekhar, F. Raoufi, Polycyclic Aromat. Compd. 2022, 42(7), 4780.
- 10H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska, J. Mater. Chem. 2009, 19(26), 4632.
- 11A. Chakraborty, T. Chowdhury, M. I. Menéndez, M. I. T. Chattopadhyay, ACS Appl. Mater. Interfaces 2020, 12(34), 38530.
- 12S. M. G. Yek, M. Nasrollahzadeh, D. Azarifar, A. Rostami-Vartooni, M. Ghaemi, M. Shokouhimehr, Mater. Chem. Phys. 2022, 284, 126053.
- 13S. A. Dalia, F. Afsan, M. S. Hossain, M. N. Khan, C. Zakaria, M. K. E. Zahan, M. Ali, Int. J. Chem. Sci. 2018, 6(3), 2859.
- 14J. Dadashi, M. Khaleghian, B. Mirtamizdoust, Y. Hanifehpour, S. W. Joo, Crystals 2022, 12(6), 862.
- 15R. K. Sharma, Y. Monga, A. Puri, J. Mol. Catal. A: Chem. 2014, 393, 84.
- 16S. M. G. Yek, D. Azarifar, M. Nasrollahzadeh, M. Bagherzadeh, M. Shokouhimehr, Sep. Purif. Technol. 2020, 247, 116952.
- 17F. M. Gorji, N. Monadi, Synth. Met. 2019, 258, 116199.
- 18M. Maniyazagan, P. Naveenkumar, H. W. Yang, H. Zuhaib, W. S. Kang, S. J. Kim, J. Mol. Liq. 2022, 365, 120123.
- 19M. Çalışkan, T. Baran, J. Organomet. Chem. 2022, 963, 122284.
- 20M. Najafi, S. Azizian, Appl. Nanosci. 2020, 10(10), 3827.
- 21P. Wilhelm, D. Stephan, J. Photochem. Photobiol., a 2007, 185(1), 19.
- 22N. Al-Bastaki, Chem. Eng. Process. 2004, 43(12), 1561.
- 23B. Shi, G. Li, D. Wang, C. Feng, H. Tang, J. Hazard. Mater. 2007, 143(1–2), 567.
- 24R. Xu, H. Bi, G. He, J. Zhu, J. Chen, Mater. Res. Bull. 2014, 57, 190.
- 25A. E. Vilian, S. R. Choe, K. Giribabu, S. C. Jang, C. Roh, Y. S. Huh, Y. K. Han, J. Hazard. Mater. 2017, 333, 54.
- 26M. Nasrollahzadeh, M. Sajjadi, M. R. Tahsili, Sep. Purif. Technol. 2020, 238, 116403.
- 27Y. H. Chu, M. Yamagishi, Z. M. Wang, H. Kanoh, T. Hirotsu, J. Colloid Interface Sci. 2007, 312(2), 186.
- 28P. Bradder, S. K. Ling, S. Wang, S. Liu, J. Chem. Eng. Data 2011, 56(1), 138.
- 29S. Nandi, R. Jamatia, R. Sarkar, F. K. Sarkar, S. Alam, A. K. Pal, ChemistrySelect 2022, 7(33), e202201901.
- 30M. Aghajani, N. Monadi, J. Chin. Chem. Soc. 2019, 66(7), 775.
- 31A. Nawaz, A. S. Aslam, M. Ahmad, A. F. Zahoor, S. A. R. Naqvi, J. Iran. Chem. Soc. 2022, 19, 3721.
- 32S. N. Maddila, S. Maddila, W. E. Van Zyl, S. B. Jonnalagadda, ChemistryOpen 2016, 5(1), 38.
- 33D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, J. M. Tour, ACS Nano 2010, 4(8), 4806.
- 34L. T. M. Thy, N. H. Thuong, T. H. Tu, H. M. Nam, N. H. Hieu, M. T. Phong, Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10(2), 025006.
- 35W. Li, F. Xue, Q. Li, Plast. Rubber Compos. 2018, 47(5), 187.
- 36Y. Yang, Y. Zhang, S. Hao, J. Guan, H. Ding, F. Shang, Q. Kan, Appl. Catal. 2010, 381(1–2), 274.
- 37M. Aghajani, N. Monadi, Appl. Organomet. Chem. 2018, 32(8), e4433.
- 38Y. Wei, C. Gao, F. L. Meng, H. H. Li, L. Wang, J. H. Liu, X. J. Huang, J. Phys. Chem. C 2012, 116(1), 1034.
- 39S. Rayati, E. Khodaei, S. Shokoohi, M. Jafarian, B. Elmi, A. Wojtczak, Inorg. Chim. Acta 2017, 466, 520.
- 40D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112(11), 6027.
- 41P. Shi, N. Ye, Anal. Methods 2014, 6(24), 9725.
- 42M. Masteri-Farahani, S. Mirshekar, Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 387.
- 43A. T. Le, C. D. Giang, T. Q. Tuan, V. N. Phan, J. Alonso, J. Devkota, M. H. Phan, Nanotechnology 2016, 27(15), 155707.
- 44Y. X. Ma, D. Xing, Y. X. Ruan, X. Y. Du, P. Q. La, Environ. Eng. Sci. 2018, 35(3), 219.
- 45B. Jaleh, A. Khalilipour, S. Habibi, M. Niyaifar, M. Nasrollahzadeh, J. Mater. Sci. Mater. Electron. 2017, 28(6), 4974.
- 46Y. Hao, Z. Wang, J. Gou, S. Dong, Arabian J. Chem. 2019, 12(8), 3064.
- 47G. Wang, G. Chen, Z. Wei, X. Dong, M. Qi, Mater. Chem. Phys. 2013, 141(2–3), 997.
- 48G. Bharath, S. Anwer, R. V. Mangalaraja, E. Alhseinat, F. Banat, N. Ponpandian, Sci. Rep. 2018, 8, 5718.
- 49M. Aghajani, E. Safaei, B. Karimi, Synth. Met. 2017, 233, 63.
- 50J. M. Khurana, B. Nand, P. Saluja, Tetrahedron 2010, 66(30), 5637.
- 51M. Zendehdel, M. A. Bodaghifard, H. Behyar, Z. Mortezaei, Microporous Mesoporous Mater. 2018, 266, 83.
- 52S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, F. Şen, Nano-Struct. Nano-Objects 2017, 11, 25.
- 53B. Pourhasan, A. Mohammadi-Nejad, J. Chin. Chem. Soc. 2019, 66(10), 1356.
- 54N. Monadi, H. Davoodi, M. Aghajani, React. Kinet., Mech. Catal. 2020, 129(2), 659.
- 55A. Ghorbani-Choghamarani, B. Ghasemi, Z. Safari, G. Azadi, Cat. Com. 2015, 60, 70.
- 56M. Farahi, B. Karami, S. Alipour, L. T. Moghadam, Acta Chim. Slov. 2014, 61(1), 94.
- 57H. D. Bhosale, S. U. Shisodia, R. D. Ingle, P. S. Kendrekar, A. U. Shisodia, L. Kótai, Eur. Chem. Bull. 2018, 7(3), 120.
- 58M. M. Heravi, K. Bakhtiari, V. Zadsirjan, F. F. Bamoharram, O. M. Heravi, Bioorg. Med. Chem. Lett. 2007, 17(15), 4262.
- 59F. K. Behbahani, S. Maryam, J. Korean Chem. Soc. 2013, 57(3), 357.
- 60M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomirouzbahani, Ceram. Int. 2016, 42(7), 8587.
- 61M. Maham, M. Nasrollahzadeh, S. M. Sajadi, M. Nekoei, J. Colloid Interface Sci. 2017, 497, 33.
- 62M. Atarod, M. Nasrollahzadeh, S. M. Sajadi, J. Colloid Interface Sci. 2016, 465, 249.
- 63J. Li, C. Y. Liu, Y. Liu, J. Mater. Chem. 2012, 22(17), 8426.
- 64B. J. Borah, P. Bharali, J. Mol. Catal. A: Chem. 2014, 390, 29.
- 65A. Hatamifard, M. Nasrollahzadeh, J. Lipkowski, RSC Adv. 2015, 5(111), 91372.
- 66S. Naghdi, M. Sajjadi, M. Nasrollahzadeh, K. Y. Rhee, S. M. Sajadi, B. Jaleh, J. Taiwan Inst. Chem. Eng. 2018, 86, 158.
- 67M. Ismail, S. Gul, M. I. Khan, M. A. Khan, A. M. Asiri, S. B. Khan, Green Process. Synth. 2019, 8(1), 135.
- 68I. A. Salem, M. S. El-Maazawi, Chemosphere 2000, 41(8), 1173.
- 69M. Nasrollahzadeh, Z. Issaabadi, S. M. Sajadi, Compos. Part B Eng. 2019, 166, 112.
- 70Y. Zhang, P. Zhu, L. Chen, G. Li, F. Zhou, D. D. Lu, C. P. Wong, J. Mater. Chem. A 2014, 2(30), 11966.
- 71P. Zhang, Y. Sui, C. Wang, Y. Wang, G. Cui, C. Wang, B. Zou, Nanoscale 2014, 6(10), 5343.
- 72Z. Gan, A. Zhao, M. Zhang, W. Tao, H. Guo, Q. Gao, E. Liu, Dalton Trans. 2013, 42(24), 8597.
- 73M. Swargiary, A. Mitra, D. Halder, S. Kumar, Biocatal. Biotransformation 2019, 37(3), 183.