Novel axial substituted subphthalocyanine sensitized titanium dioxide H12SubPcB-OPh2OH/TiO2 photocatalyst: Synthesis, density functional theory calculation, and photocatalytic properties
Lin Yang
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Data curation, Formal analysis, Investigation, Software
Search for more papers by this authorBingbing Zhang
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Data curation, Formal analysis, Supervision
Search for more papers by this authorCorresponding Author
Zhuo Li
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
Correspondence
Zhuo Li and Xiaoxun Ma, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
Email: [email protected]; [email protected]
Contribution: Funding acquisition, Investigation, Project administration, Validation
Search for more papers by this authorChen Wang
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
Contribution: Software
Search for more papers by this authorLinyu Jiao
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
Contribution: Resources
Search for more papers by this authorBing Wang
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Software, Supervision
Search for more papers by this authorYafei Wang
School of Chemical Engineering, Northwest University, Xi'an, China
Search for more papers by this authorHaixia Ma
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Software
Search for more papers by this authorCorresponding Author
Xiaoxun Ma
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Xi'an, China
Correspondence
Zhuo Li and Xiaoxun Ma, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
Email: [email protected]; [email protected]
Contribution: Funding acquisition, Project administration, Resources, Validation
Search for more papers by this authorLin Yang
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Data curation, Formal analysis, Investigation, Software
Search for more papers by this authorBingbing Zhang
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Data curation, Formal analysis, Supervision
Search for more papers by this authorCorresponding Author
Zhuo Li
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
Correspondence
Zhuo Li and Xiaoxun Ma, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
Email: [email protected]; [email protected]
Contribution: Funding acquisition, Investigation, Project administration, Validation
Search for more papers by this authorChen Wang
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
Contribution: Software
Search for more papers by this authorLinyu Jiao
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
Contribution: Resources
Search for more papers by this authorBing Wang
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Software, Supervision
Search for more papers by this authorYafei Wang
School of Chemical Engineering, Northwest University, Xi'an, China
Search for more papers by this authorHaixia Ma
School of Chemical Engineering, Northwest University, Xi'an, China
Contribution: Software
Search for more papers by this authorCorresponding Author
Xiaoxun Ma
School of Chemical Engineering, Northwest University, Xi'an, China
Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Northwest University, Xi'an, China
International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Xi'an, China
Correspondence
Zhuo Li and Xiaoxun Ma, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
Email: [email protected]; [email protected]
Contribution: Funding acquisition, Project administration, Resources, Validation
Search for more papers by this authorFunding information: Northwest University, Grant/Award Number: NJ01661; Natural Science Foundation of Shaanxi Provincial Education Department, Grant/Award Numbers: 16JK1786, 16JF027; National Natural Science Foundation of China, Grant/Award Numbers: 21606180, 21606182
Abstract
Utilizing subphthalocyanine (SubPc) and 4,4′-dihydroxybiphenyl (C12H10O2) as the raw materials, an innovative axial substituted SubPc H12SubPcB-OPh2OH was synthesized by solvothermal method. The density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were employed to further study the properties and structures of H12SubPcB-OPh2OH. To expand photocatalytic activities for organic dyes degradation, H12SubPcB-OPh2OH was decorated onto surface of TiO2 nanoparticles to fabricate high-efficiency H12SubPcB-OPh2OH/TiO2 photosensitive catalysts. The degradation experiments indicated that the H12SubPcB-OPh2OH/TiO2 catalyst with the mass ratio of 1:25 had the greatest performance in the elimination of methyl orange (MO), bromophenol blue (BB), methylene blue (MB), and acid fuchsin (AF). The 29.4%, 72.5%, 27.6%, and 64.8% of MO, BB, MB, and AF was removed by pure TiO2 in 180-min, respectively. Under the same conditions, the photocatalytic rate of H12SubPcB-OPh2OH/TiO2 can reach 96.3%, 99.5%, 97.5%, and 99.5%, separately. The efficiency of the as-synthesized composite was 3.3, 1.4, 3.5, and 1.5 times higher than that over bare TiO2 for MO, BB, MB, and AF degradation under visible-light irradiation, respectively. Besides, after five cycles of experiments, the degradation rate of H12SubPcB-OPh2OH/TiO2 photocatalyst to BB can still reach 90.2%, which demonstrated that the obtained photocatalysts possessed remarkable stability and is much higher than 15.6% of pure TiO2. This study provides a new idea to the construction of photosensitive catalysts based on TiO2 for water purification.
CONFLICT OF INTEREST
There are no conflicts to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
aoc6270-sup-0001-Data_S1.docxWord 2007 document , 1.8 MB |
Table S1 Crystallographic data of H12SubPcB-OPh2OH. Table S2 Selected bond length (Å) and bond angle (°) data for H12SubPcB-OPh2OH. Figure S1 SEM of (a) H12SubPcB-OPh2OH/TiO2 (1:50), (b) H12SubPcB-OPh2OH/TiO2 (1:75), EDS pattern of (c) H12SubPcB-OPh2OH/TiO2 (1:50), (d) H12SubPcB-OPh2OH/TiO2 (1:75), (e) H12SubPcB-OPh2OH/TiO2 (1:100), (f) H12SubPcB-OPh2OH/TiO2 (1:200). Figure S2 Typical plots for the estimation of pHPZC of the H12SubPcB-OPh2OH/TiO2 (1:25). Experimental conditions: pH adjustment: 0.1 M HCl and 0.1 M NaOH solution, 10 mg/L MB solution, 3.0 g/L photocatalyst, T = 298 K, P = 1 atm. Figure S3 Degradation efficiency at different pH of the tested MB solution for H12SubPcB-OPh2OH/TiO2 (1:25) photocatlyst. Experimental conditions: pH adjustment: 0.1 M HCl and 0.1 M NaOH solution, 10 mg/L MB solution, 1.0 g/L photocatalyst, T = 298 K, P = 1 atm. Figure S4 Coexisting ions on MB photodegradation performance by H12SubPcB-OPh2OH/TiO2 (1:25) under visible light irradiation. Experimental conditions: 10 mg/L MB solution, 1.0 g/L photocatalyst, 0.1 M NaCl, Na2CO3 and Na2SO4, T = 298 K, P = 1 atm. Table S3 Pseudo first-order kinetic rate constant (k) of the organic pollutants degradations for TiO2 and H12SubPcB-OPh2OH/TiO2 with different mass ratio. Figure S5 The photocatalytic degradation of H12SubPcB-OPh2OH/TiO2 (1:25) for MB solution under actual sunlight irradiation. Experimental conditions: pH: 7.2, 10 mg/L MB solution, 1.0 g/L photocatalyst, T = 285 K, P = 1 atm. Figure S6 TOC removal of MB at 180 min under visible-light irradiation. Experimental conditions: pH: 7.2, 10 mg/L MB solution, 1.0 g/L photocatalyst, T = 298 K, P = 1 atm. Figure S7 Free-radical trapping experiments of H12SubPcB-OPh2OH/TiO2 (1:25). Experimental conditions: 5 mmol of IPA and EDTA-2Na, 2 mmol BQ, 10 mg/L MB solution, 1.0 g/L photocatalyst, T = 298 K, P = 1 atm. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1L. Cui, S. Liu, F. Wang, J. Li, Y. Song, Y. Sheng, H. Zou, J. Alloys Compd. 2020, 826, 154001. https://doi.org/10.1016/j.jallcom.2020.154001
- 2S. Sun, H. Ding, L. Mei, Y. Chen, Q. Hao, W. Chen, Z. Xu, D. Chen, Chin. Chem. Lett. 2020, 31, 2287. https://doi.org/10.1016/j.cclet.2020.03.026
- 3S. Shafafi, A. Habibi-Yangjeh, S. Feizpoor, S. Ghosh, T. Maiyalagan, Sep. Purif. Technol. 2020, 250, 117179. https://doi.org/10.1016/j.seppur.2020.117179
- 4B. S. Cha, E. S. Lee, S. Kim, J. M. Kim, S. H. Hwang, S. S. Oh, K. S. Park, Microchem. J. 2020, 158, 105130. https://doi.org/10.1016/j.microc.2020.105130
- 5E. S. Mansor, A. Labena, R. M. Moghazy, A. E. Abdelhamid, J. Water Process Eng. 2020, 37, 101424. https://doi.org/10.1016/j.jwpe.2020.101424
- 6D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, R. Ruan, J. Clean. Prod. 2020, 268, 121725. https://doi.org/10.1016/j.jclepro.2020.121725
- 7S. Sharma, A. O. Ibhadon, M. G. Francesconi, S. K. Mehta, S. Elumalai, S. K. Kansal, A. Umar, S. Baskoutas, Nanomaterials (Basel) 2020, 10, 910. https://doi.org/10.3390/nano10050910
- 8R. V. S. Aquino, A. A. Barbosa, R. F. Carvalho, M. G. Silva, W. J. D. Nascimento Junior, T. D. D. Silva, J. P. Silva, O. R. S. da Rocha, Water Sci. Technol. 2019, 80, 1163. https://doi.org/10.2166/wst.2019.363
- 9I. Aslam, C. Cao, M. Tanveer, M. Farooq, W. Khan, M. Tahir, F. Idrees, S. Khalid, RSC Adv. 2015, 5, 6019. https://doi.org/10.1039/c4ra15847d
- 10M. Kermani, B. Kakavandi, M. Farzadkia, A. Esrafili, S. F. Jokandan, A. Shahsavani, J. Clean. Prod. 2018, 192, 597. https://doi.org/10.1016/j.jclepro.2018.04.274
- 11A. Bhattacharjee, M. Ahmaruzzaman, Adv. Sci. Lett. 2016, 22, 216. https://doi.org/10.1166/asl.2016.6778
10.1166/asl.2016.6778 Google Scholar
- 12L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, S. Agarwal, V. K. Gupta, J. Photochem. Photobiol. B 2017, 173, 43. https://doi.org/10.1016/j.jphotobiol.2017.05.027
- 13M. Honarmand, M. Golmohammadi, A. Naeimi, Adv. Powder Technol. 2019, 30, 1551. https://doi.org/10.1016/j.apt.2019.04.033
- 14Y. Ke, H. Guo, D. Wang, J. Chen, W. Wen, J. Mater. Res. 2014, 29, 2473. https://doi.org/10.1557/jmr.2014.276
- 15H. Moua, C. Songa, Y. Zhoub, Z. Bo, D. Wangb, Appl Catal B 2018, 221, 565. https://doi.org/10.1016/j.apcatb.2017.09.061
- 16S. Saini, Y. T. Prabhu, B. Sreedhar, P. K. Prajapati, U. Pal, S. L. Jain, Materialia 2020, 12, 100777. https://doi.org/10.1016/j.mtla.2020.100777
- 17M. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M. M. Müller, H. J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 2012, 51, 7764. https://doi.org/10.1021/ic300794j
- 18A. Ozawa, M. Yamamoto, T. Tanabe, T. Yoshida, ACS Omega 2019, 4, 20430. https://doi.org/10.1021/acsomega.9b02979
- 19D. Gao, P. Zhao, B. Lyu, Y. Li, Y. Hou, J. Ma, Appl. Organomet. Chem. 2020, 34, e5665. https://doi.org/10.1002/aoc.5665
- 20X. Yu, X. Zhang, J. Zhao, L. Xu, J. Yan, Appl. Organomet. Chem. 2020, 34, e5702. https://doi.org/10.1002/aoc.5702
- 21F. Abdollah, S. M. Borghei, E. Moniri, S. Kimiagar, H. A. Panahi, Water Sci. Technol. 2019, 80, 864. https://doi.org/10.2166/wst.2019.333
- 22Z. Li, B. Wang, G. Y. Cui, B. B. Zhang, Y. F. Wang, L. Yang, H. X. Ma, L. Y. Jiao, L. Y. Pang, X. X. Ma, J. Alloys Compd. 2021, 855, 157458. https://doi.org/10.1016/j.jallcom.2020.157458
- 23E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryzynska, A. Zielinska-Jurek, Sci. Total Environ. 2020, 724, 138167. https://doi.org/10.1016/j.scitotenv.2020.138167
- 24Y. F. Wang, B. B. Zhang, Z. Li, B. Wang, L. Y. Jiao, C. Wang, L. Yang, H. X. Ma, L. Y. Pang, X. X. Ma, New J. Chem. 2020, 44, 21192.
- 25S. Moradi, A. A. Isari, F. Hayati, R. R. Kalantary, B. Kakavandi, Chem. Eng. J. 2021, 414, 128618. https://doi.org/10.1016/j.cej.2021.128618
- 26A. A. Babaei, M. Golshan, B. Kakavandi, Process Saf. Environ. Prot. 2021, 149, 35. https://doi.org/10.1016/j.psep.2020.10.028
- 27S. S. Rezaei, B. Kakavandi, M. Noorisepehr, A. A. Isari, S. Zabih, P. Bashardoust, Sep. Purif. Technol. 2021, 258, 117936. https://doi.org/10.1016/j.seppur.2020.117936
- 28F. Hayati, M. R. Khodabakhshi, A. A. Isari, S. Moradi, B. Kakavandi, J. Water Process Eng. 2020, 38. https://doi.org/10.1016/j.jwpe.2020.101693
- 29A. Isari, F. Hayati, B. Kakavandi, M. Rostami, M. Motevassel, E. Dehghanifard, Chem. Eng. J. 2020, 392, 123685. https://doi.org/10.1016/j.cej.2019.123685
- 30I. Elmehasseb, S. Kandil, K. Elgendy, Optik 2020, 213, 164654. https://doi.org/10.1016/j.ijleo.2020.164654
- 31S. N. A. Sulaiman, M. Z. Noh, N. N. Adnan, N. Bidin, S. N. A. Razak, J. Phys.: Conf. Ser. 2018, 1027, 012006. https://doi.org/10.1088/1742-6596/1027/1/012006
10.1088/1742-6596/1027/1/012006 Google Scholar
- 32S. Bouattour, W. Kallel, A. M. B. do Rego, L. F. V. Ferreira, I. F. Machado, S. Boufi, Appl. Organomet. Chem. 2010, 24, 692. https://doi.org/10.1002/aoc.1668
- 33F. Zhou, Z. Zhang, Y. Jiang, G. Yu, Q. Wang, W. Liu, J. Phys. Chem. Solid 2020, 144, 109512. https://doi.org/10.1016/j.jpcs.2020.109512
- 34C. Zhang, Y. Zhou, J. Bao, Y. Zhang, S. Zhao, J. Fang, W. Chen, X. Sheng, Appl. Organomet. Chem. 2017, 32, e4204. https://doi.org/10.1002/aoc.4204
- 35M. Anpo, Y. Ichihashi, M. Takeuchi, H. Yamashita, Res. Chem. Intermed. 1998, 24, 143. https://doi.org/10.1163/156856798X00735
- 36J. Li, X. Hou, T. Sun, J. Han, H. Liu, D. Li, Surf. Coat. Technol. 2019, 365, 123. https://doi.org/10.1016/j.surfcoat.2018.07.063
- 37I. Fatimah, R. Nurillahi, I. Sahroni, O. Muraza, Appl. Clay Sci. 2019, 183, 105302. https://doi.org/10.1016/j.clay.2019.105302
- 38B. Wang, G.-Y. Cui, B.-B. Zhang, Z. Li, H.-X. Ma, W. Wang, F.-Y. Zhang, X.-X. Ma, Opt. Mater. 2020, 109, 110202. https://doi.org/10.1016/j.optmat.2020.110202
- 39C. Pan, J. Jia, X. Hu, J. Fan, E. Liu, Appl. Surf. Sci. 2018, 430, 283. https://doi.org/10.1016/j.apsusc.2017.07.189
- 40S. Sun, Q. Chi, H. Zhou, W. Ye, G. Zhu, P. Gao, Int. J. Hydrogen Energy 2018, 44, 3553. https://doi.org/10.1016/j.ijhydene.2018.12.097
- 41S. Rudolf, D. Gabriela, S. Krzysztof, M. Giuseppe, P. Iolanda, Photochem. Photobiol. Sci. 2011, 10, 361. https://doi.org/10.1039/c0pp00160k
- 42M. Giuseppe, A. Cosimo, D. A. Lucia, D. R. Alberto, F. Caterina, P. Leonardo, S. Anna, V. Giuseppe, Molecules (Basel, Switzerland) 2014, 20, 396. https://doi.org/10.3390/molecules20010396
- 43C. Ruan, L. Zhang, Y. Qin, C. Xu, X. Zhang, J. Wan, Z. Peng, J. Shi, X. Li, L. Wang, Mater. Lett. 2015, 141, 362. https://doi.org/10.1016/j.matlet.2014.11.095
- 44B. Wang, G. Y. Cui, Z. Li, H. X. Ma, B. B. Zhang, W. Wang, M. M. Sun, L. Y. Jiao, X. X. Ma, Mater. Today Commun. 2020, 25, 101264. https://doi.org/10.1016/j.mtcomm.2020.101264
- 45Z. Li, B. Wang, B. B. Zhang, H. X. Ma, J. Xue, L. Xu, L. Y. Jiao, X. X. Ma, J. Photochem. Photobiol. A 2021, 405, 112929. https://doi.org/10.1016/j.jphotochem.2020.112929
- 46G. R. Monama, K. D. Modibane, K. E. Ramohlola, K. M. Molapo, M. J. Hato, M. D. Makhafola, G. Mashao, S. B. Mdluli, E. I. Iwuoha, Int. J. Hydrogen Energy 2019, 44, 18891. https://doi.org/10.1016/j.ijhydene.2019.02.052
- 47J. Sun, J. Bian, J. Li, Z. Zhang, Z. Li, Y. Qu, L. Bai, Z.-D. Yang, L. Jing, Appl Catal B 2020, 277, 119199. https://doi.org/10.1016/j.apcatb.2020.119199
- 48E. R. L. Brisson, A. S. Paton, G. E. Morse, T. P. Bender, Ind. Eng. Chem. Res. 2011, 50, 10910. https://doi.org/10.1021/ie200480x
- 49Y. Yamasaki, T. Mori, Chem. Lett. 2010, 39, 1108. https://doi.org/10.1246/cl.2010.1108
- 50M. Shi, Y. Zhao, H. Xu, J. Mack, L. Yin, X. Wang, Z. Shen, RSC Adv. 2016, 6, 71199. https://doi.org/10.1039/c6ra11452k
- 51R. Menting, D. K. Ng, B. Roder, E. A. Ermilov, Phys. Chem. Chem. Phys. 2012, 14, 14573. https://doi.org/10.1039/c2cp42416a
- 52Z. Biyiklioglu, H. Alp, Dalton Trans. 2016, 45, 3838. https://doi.org/10.1039/c5dt05072c
- 53B. B. Zhang, H. Hao, F. Y. Zhang, B. Wang, J. Xue, L. Y. Jiao, Z. Li, J. Appl. Electrochem. 2020, 50, 1007. https://doi.org/10.1007/s10800-020-01455-8
- 54Z. Li, B. Wang, B. B. Zhang, G. Y. Cui, F. Y. Zhang, L. Xu, L. Y. Jiao, L. Y. Pang, X. X. Ma, ChemistryOpen 2020, 9, 1001. https://doi.org/10.1002/open.202000206
- 55M. B. Spesia, E. N. Durantini, Dyes Pigm. 2008, 77, 229. https://doi.org/10.1016/j.dyepig.2007.05.008
- 56E. Winckel, M. Mascaraque, A. Zamarrón, Á. Juarranz de la Fuente, T. Torres, A. Escosura, Adv. Funct. Mater. 2018, 28, 1705938. https://doi.org/10.1002/adfm.201705938
- 57T. Yasuda, T. Tsutsui, Mol. Cryst. Liq. Cryst. 2006, 462, 3. https://doi.org/10.1080/15421400601009278
- 58M. G. Helander, G. E. Morse, J. Qiu, J. S. Castrucci, T. P. Bender, Z. H. Lu, ACS Appl. Mater. Interfaces 2010, 2, 3147. https://doi.org/10.1021/am100632y
- 59A. W. Hains, Z. Liang, M. A. Woodhouse, B. A. Gregg, Chem. Rev. 2010, 110, 6689. https://doi.org/10.1021/cr9002984
- 60G. M. Sheldrick, Methods Enzymol. 1997, 276, 628. https://doi.org/10.1016/S0076-6879(97)76083-X
- 61G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2008, A64, 112. https://doi.org/10.1107/S0108767307043930
- 62M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. Robb, J. R. Cheeseman, H. Nakatsuji, Gaussian 16, Revision C.01, Gaussian Inc, Wallingford, CT.
- 63M. Hamdoush, K. Nikitin, I. Skvortsov, N. Somov, Y. Zhabanov, P. A. Stuzhin, Dyes Pigm. 2019, 170, 107584. https://doi.org/10.1016/j.dyepig.2019.107584
- 64A. M. Shebitha, S. S. Sreejith, P. B. S. Mole, N. Mohan, G. Avudaiappan, K. Hiba, K. S. Priya, K. Sreekumar, J. Mol. Struct. 2020, 1214, 128215. https://doi.org/10.1016/j.molstruc.2020.128215
- 65G. Li, S. Zheng, Spectrochim. Acta, Part A 2019, 222, 117180. https://doi.org/10.1016/j.saa.2019.117180
- 66L. Tian, C. Feiwu, J. Comput. Chem. 2012, 33, 580. https://doi.org/10.1002/jcc.22885
- 67G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, V. Barone, J. Chem. Phys. 2006, 124, 427. https://doi.org/10.1063/1.2173258
- 68T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011
- 69P. C. C. Faria, J. J. M. Órfão, M. F. R. Pereira, Water Res. 2004, 38, 2043. https://doi.org/10.1016/j.watres.2004.01.034
- 70G. B. P. Singh, S. Mayuri, R. L. Prasad, R. A. Yadav, Spectrochim. Acta, Part A 2014, 129, 241. https://doi.org/10.1016/j.saa.2014.02.082
- 71Y. Tao, L. Han, X. Li, Y. Han, Z. Liu, J. Mol. Struct. 2016, 1108, 307. https://doi.org/10.1016/j.molstruc.2015.12.031
- 72D. Shoba, S. Periandi, S. Boomadevi, S. Ramalingam, E. Fereyduni, Spectrochim. Acta, Part A 2014, 118, 438. https://doi.org/10.1016/j.saa.2013.09.023
- 73Y. Tao, X. Li, L. Han, W. Zhang, Z. Liu, J. Mol. Struct. 2016, 1121, 188. https://doi.org/10.1016/j.molstruc.2016.05.077
- 74E. Maligaspe, M. R. Hauwiller, Y. V. Zatsikha, J. A. Hinke, P. V. Solntsev, D. A. Blank, V. N. Nemykin, Inorg. Chem. 2014, 53, 9336. https://doi.org/10.1021/ic5014544
- 75T. Lu, Multiwfn Manual, Version 3.6 (dev), Section 3.21.8, available at http://sobereva.com/multiwfn (accessed Aug 30, 2018).
- 76S. Moradi, S. A. Sobhgol, F. Hayati, A. A. Isari, B. Kakavandi, P. Bashardoust, B. Anvaripour, Spectrochim. Acta, Part A 2020, 251, 117373. https://doi.org/10.1016/j.seppur.2020.117373
- 77S. S. Rezaei, E. Dehghanifard, M. Noorisepehr, K. Ghadirinejad, B. Kakavandi, A. R. Esfahani, J. Environ. Manage. 2019, 250, 109472. https://doi.org/10.1016/j.jenvman.2019.109472