Microwave assisted synthesis of disubstituted benzyltin arylformylhydrazone complexes: anticancer activity and DNA-binding properties
Corresponding Author
Wu-Jiu Jiang
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Correspondence
Wu-Jiu Jiang and Yu-Xing Tan, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan 421008, China.
Email: [email protected]; [email protected]
Search for more papers by this authorQian Zhou
School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
Search for more papers by this authorMeng-Qin Liu
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Search for more papers by this authorFu-Xing Zhang
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Search for more papers by this authorDai-Zhi Kuang
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Search for more papers by this authorCorresponding Author
Yu-Xing Tan
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Correspondence
Wu-Jiu Jiang and Yu-Xing Tan, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan 421008, China.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wu-Jiu Jiang
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Correspondence
Wu-Jiu Jiang and Yu-Xing Tan, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan 421008, China.
Email: [email protected]; [email protected]
Search for more papers by this authorQian Zhou
School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
Search for more papers by this authorMeng-Qin Liu
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Search for more papers by this authorFu-Xing Zhang
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Search for more papers by this authorDai-Zhi Kuang
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Search for more papers by this authorCorresponding Author
Yu-Xing Tan
Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan, 421008 China
Correspondence
Wu-Jiu Jiang and Yu-Xing Tan, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hunan 421008, China.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
Eight disubstituted benzyltin complexes, i.e., {[R(O)C=N-N=C (Me)COO]R'2Sn(CH3OH)}n (1a and 2b), {[R(O)C=N-N=C (Me)COO]R'2Sn(CH3OH)}2 (1b and 1d) and {[R(O)C=N-N=C (Me)COO]R'2Sn}n (1c, 2a, 2c, and 2d) (R = C4H3O-, C4H3S-, p–t-Bu-C6H4- or p-MeO-C6H4-; R' = o-Cl-C6H4CH2- or o-Me-C6H4CH2-), were prepared from the reaction of arylformylhydrazine, pyruvic acid and disubstituted benzyltin dichloride with microwave irradiation. All complexes were characterized by FT-IR spectroscopy, 1H, 13C and 119Sn NMR spectroscopy, HRMS, elemental analysis, X-ray single-crystal diffraction and TGA. The in vitro antitumour activities of all complexes were evaluated by an MTT assay against three human cancer cell lines (NCI-H460, HepG2, and MCF7). 2b exhibited strong antitumour activity on HepG2 cells and was expected to be a suitable platform for further chemical optimization to develop as anticancer therapeutics. The DNA binding of 2b was studied by UV–visible absorption spectrometry, fluorescence competitive assays, viscosity measurements and gel electrophoresis. Molecular docking was used to predict the binding between 2b and DNA, and the results show that 2b can become embedded in the double helix of DNA and cleave DNA.
Supporting Information
Filename | Description |
---|---|
aoc5092-sup-0001-J-6-Support_Information20190512.docWord document, 5.4 MB |
FIGURE S1 The IR spectra of 1a FIGURE S2 The IR spectra of 1b FIGURE S3 The IR spectra of 1c FIGURE S4 The IR spectra of 1d FIGURE S5 The IR spectra of 2a FIGURE S6 The IR spectra of 2b FIGURE S7 The IR spectra of 2c FIGURE S8 The IR spectra of 2d FIGURE S9 The 1H NMR spectra of 1a FIGURE S10 The 1H NMR spectra of 1b FIGURE S11 The 1H NMR spectra of 1c FIGURE S12 The 1H NMR spectra of 1d FIGURE S13 The 1H NMR spectra of 2a FIGURE S14 The 1H NMR spectra of 2b FIGURE S15 The 1H NMR spectra of 2c FIGURE S16 The 1H NMR spectra of 2d FIGURE S17 The 13C NMR spectra of 1a FIGURE S18 The 13C NMR spectra of 1b FIGURE S19 The 13C NMR spectra of 1c FIGURE S20 The 13C NMR spectra of 1d FIGURE S21 The 13C NMR spectra of 2a FIGURE S22 The 13C NMR spectra of 2b FIGURE S23 The 13C NMR spectra of 2c FIGURE S24 The 13C NMR spectra of 2d FIGURE S25 The 119Sn NMR spectra of 1a FIGURE S26 The 119Sn NMR spectra of 1b FIGURE S27 The 119Sn NMR spectra of 1c FIGURE S28 The 119Sn NMR spectra of 1d FIGURE S29 The 119Sn NMR spectra of 2a FIGURE S30 The 119Sn NMR spectra of 2b FIGURE S31 The 119Sn NMR spectra of 2c FIGURE S32 The 119Sn NMR spectra of 2d FIGURE S33 The HRMS spectra of 1a FIGURE S34 The HRMS spectra of 1b FIGURE S35 The HRMS spectra of 1c FIGURE S36 The HRMS spectra of 1d FIGURE S37 The HRMS spectra of 2a FIGURE S38 The HRMS spectra of 2b FIGURE S39 The HRMS spectra of 2c FIGURE S40 The HRMS spectra of 2d FIGURE S41 The TG-DTG curve of 1a FIGURE S42 The TG-DTG curve of 1b FIGURE S43 The TG-DTG curve of 1c FIGURE S44 The TG-DTG curve of 1d FIGURE S45 The TG-DTG curve of 2a FIGURE S46 The TG-DTG curve of 2b FIGURE S47 The TG-DTG curve of 2c FIGURE S48 The TG-DTG curve of 2d TABLE S1 The selected bond length(Å) and angles(°) for 1a, 1b, 2a, 2b and 2c |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1B. Rosenberg, L. Vancamp, J. E. Trosko, V. H. Mansour, Nature 1969, 222, 385.
- 2W. Cao, J. Qi, K. Qian, L. Tian, Z. Cheng, Y. Wang, J. Inorg. Biochem. 2019, 191, 174.
- 3M. Zaki, S. Hairat, E. S. Aazam, RSC Adv. 2019, 9, 3239.
- 4D. Díaz-García, D. Cenariu, Y. Pérez, P. Cruz, I. del Hierro, S. Prashar, E. Fischer-Fodor, S. Gómez-Ruiz, Dalton T. 2018, 47, 12284.
- 5R. G. Kenny, C. J. Marmion, Chem. Rev. 2019, 119, 1058.
- 6Y. K. Yan, M. Melchart, A. Habtemariam, P. J. Sadler, Chem. Commun. 2005, 0, 4764.
- 7M. Z. Bulatović, D. Maksimović-Ivanić, C. Bensing, S. Gómez-Ruiz, D. Steinborn, H. Schmidt, M. Mojić, A. Korać, I. Golić, D. Pérez-Quintanilla, M. Momčilović, S. Mijatović, G. N. Kaluđerović, Angew. Chem. Int. Edit. 2014, 53, 5982.
- 8N. M. Brown, Thesis for the Doctorate of Clemson University, South Carolina, Clemson 1972.
- 9T. S. Basu Baul, A. Paul, L. Pellerito, M. Scopelliti, P. Singh, P. Verma, A. Duthie, D. de Vos, E. R. T. Tiekink, Invest. New Drug. 2011, 29, 285.
- 10X. Shang, X. Meng, E. C. B. A. Alegria, Q. Li, M. F. C. Guedes da Silva, M. L. Kuznetsov, A. J. L. Pombeiro, Inorg. Chem. 2011, 50, 8158.
- 11A. Attanzio, M. Ippolito, M. A. Girasolo, F. Saiano, A. Rotondo, S. Rubino, L. Mondello, M. L. Capobianco, P. Sabatino, L. Tesoriere, G. Casella, J. Inorg. Biochem. 2018, 188, 102.
- 12L. Tian, L. Han, Y. Yao, X. Zheng, X. Liu, X. Lin, Appl. Organomet. Chem. 2018, 32, e4475.
- 13Q. Zhang, M. Zhang, H. Wang, X. Tian, W. Ma, L. Luo, J. Wu, H. Zhou, S. Li, Y. Tian, J. Inorg. Biochem. 2019, 192, 1.
- 14S. Ali, M. Sirajuddin, Curr. Pharm. Des. 2016, 22, 6665.
- 15M. Sirajuddin, S. Ali, V. McKee, M. Sohail, H. Pasha, Eur. J. Med. Chem. 2014, 84, 343.
- 16E. Gao, J. Xing, Y. Qu, X. Qiu, M. Zhu, Appl. Organomet. Chem. 2018, 32, e4469.
- 17H. J. Yu, S. M. Shui, J. F. Kou, L. Y. Li, H. N. Jia, H. Chao, L. N. Ji, Sci. China Ser. B. 2009, 52, 1504.
- 18D. Wang, S. J. Lippard, Nat. Rev. Drug Discov. 2005, 4, 307.
- 19S. Tabassum, C. Pettinari, J. Organomet. Chem. 2006, 691, 1761.
- 20M. Hong, Y. Yang, C. Li, L. Xu, D. Li, C.-z. Li, RSC Adv. 2015, 5, 102885.
- 21Q. Li, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Chem. – Eur. J. 2004, 10, 1456.
- 22T. S. Basu Baul, D. Dutta, A. Duthie, N. Guchhait, B. G. M. Rocha, M. F. C. Guedes da Silva, R. B. Mokhamatam, N. Raviprakash, S. K. Manna, J. Inorg. Biochem. 2017, 166, 34.
- 23A. Ramírez-Jiménez, R. Luna-García, A. Cortés-Lozada, S. Hernández, T. Ramírez-Apan, A. Nieto-Camacho, E. Gómez, J. Inorg. Biochem. 2013, 738, 10.
- 24K. Wang, S. Tang, Z.-B. Hu, H.-H. Zou, X.-L. Wang, Y. Li, S.-H. Zhang, Z.-L. Chen, F.-P. Liang, RSC Adv. 2018, 8, 6218.
- 25S. Kawabata, N. Ousaka, E. Yashima, Chem. Commun. 2018, 54, 2417.
- 26Q. Guo, L. Li, J. Dong, H. Liu, T. Xu, J. Li, Spectrochim. Acta a. 2013, 106, 155.
- 27M. Sarkheil, M. Lashanizadegan, Appl. Organomet. Chem. 2018, 32, e4459.
- 28K. Sisido, Y. Takeda, Z. Kinugawa, J. Am. Chem. Soc. 1961, 83, 538.
- 29G. M. Sheldrick, in SHELXL-97, A Program for Crystal Structure Refinement, (Ed: University of Geöttingen), Geöttingen 1997.
- 30L. J. Farrugia, WINGX: A Windows Program for Crystal Structure Analysis, University of Glasgow, Glasgow 1988.
- 31A. M. Pyle, J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro, J. K. Barton, J. Am. Chem. Soc. 1989, 111, 3051.
- 32C. Tan, J. Liu, L. Chen, S. Shi, L. Ji, J. Inorg. Biochem. 2008, 102, 1644.
- 33B. Merillas, E. Cuéllar, A. Diez-Varga, M. Asensio-Bartolomé, G. García-Herbosa, T. Torroba, J. M. Martín-Alvarez, D. Miguel, F. Villafañe, Inorg. Chim. Acta 2019, 484, 1.
- 34S. C. de Freitas, M. A. Z. dos Santos, L. M. Berneira, R. S. Ortiz, C. M. P. de Pereira, Sci. Justice 2019, 59, 190.
- 35R. R. Xu, W. Q. Pang, Q. S. Huo, Inorganic Synthesis and Preparative Chemistry, Higher Education Press, Beijing 2009.
- 36M. A. Salam, M. A. Hussein, I. Ramli, M. S. Islam, J. Organomet. Chem. 2016, 813, 71.
- 37M. Hong, H. Yin, X. Zhang, C. Li, C. Yue, S. Cheng, J. Organomet. Chem. 2013, 724, 23.
- 38G. B. Deacon, R. J. Phillips, Coordin. Chem. Rev. 1980, 33, 227.
- 39L. J. Tian, Y. Z. Yao, Q. T. Liu, X. F. Zhang, Chinese J. Struc. Chem. 2016, 35, 849.
- 40Y. Tan, Z. Zhang, Y. Tan, D. Kuang, J. Yu, X. Zhu, W. Jiang, J. Coord. Chem. 2017, 70, 2606.
- 41M. Yousefi, T. Sedaghat, J. Simpson, H. Motamedi, M. R. Dayer, Polyhedron 2018, 155, 153.
- 42M. A. Affan, M. A. Salam, F. B. Ahmad, F. White, H. M. Ali, Inorg. Chim. Acta 2012, 387, 219.
- 43E. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds, Springer-Verlag, Berlin Heidelberg 2009.
- 44A. G. Davies, Organotin Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2004.
10.1002/3527601899 Google Scholar
- 45M. Hong, G. Chang, R. Li, M. Niu, New J. Chem. 2016, 40, 7889.
- 46T. S. Basu Baul, P. Kehie, A. Duthie, R. Wang, U. Englert, H. Höpfl, J. Organomet. Chem. 2017, 828, 96.
- 47A. Azadmeher, M. M. Amini, N. Hadipour, H. R. Khavasi, H.-K. Fun, C.-J. Chen, Appl. Organomet. Chem. 2008, 22, 19.
- 48Y.-X. Tan, Z.-J. Zhang, Y.-L. Feng, J.-X. Yu, X.-M. Zhu, F.-X. Zhang, D.-Z. Kuang, W.-J. Jiang, J. Inorg. Organomet. P. 2017, 27, 342.
- 49F. Dimiza, S. Fountoulaki, A. N. Papadopoulos, C. A. Kontogiorgis, V. Tangoulis, C. P. Raptopoulou, V. Psycharis, A. Terzis, D. P. Kessissoglou, G. Psomas, Dalton T. 2011, 40, 8555.
- 50P. R. Inamdar, A. Sheela, J. Photoch. Photobio. B. 2016, 159, 133.
- 51S.-T. Li, Z.-Y. Ma, X. Liu, J.-L. Tian, S.-P. Yan, Appl. Organomet. Chem. 2017, 31, e3802.
- 52S. Noureen, M. Sirajuddin, S. Ali, F. Shaheen, M. N. Tahir, Polyhedron 2015, 102, 750.
- 53M. Tariq, S. Ali, N. A. Shah, N. Muhammad, M. N. Tahir, N. Khalid, Inorg. Chim. Acta 2013, 405, 444.
- 54M. Rahban, A. Divsalar, A. A. Saboury, A. Golestani, J. Phys. Chem. C 2010, 114, 5798.
- 55C. Yan, J. Zhang, T. Liang, Q. Li, Biomed. Pharmacother. 2015, 71, 119.
- 56F. Arjmand, I. Yousuf, J. Organomet. Chem. 2013, 743, 55.
- 57M. Nath, Mridula, R. Kumari, J. Photoch. Photobio. B. 2017, 174, 182.
- 58I. M. El-Deen, A. F. Shoair, M. A. El-Bindary, J. Mol. Liq. 2018, 249, 533.
- 59Z. Mirzaei-Kalar, J. Pharmaceut. Biomed. 2018, 161, 101.
- 60V. Rajamuthy, N. E. Eltayeb, R. Subramaniam, Y. Rosiyah, Appl. Organomet. Chem. 2016, 30, 481.
- 61S. Gama, I. Rodrigues, F. Marques, E. Palma, I. Correia, M. F. N. N. Carvalho, J. C. Pessoa, A. Cruz, S. Mendo, I. C. Santos, F. Mendes, I. Santos, A. Paulo, RSC Adv. 2014, 4, 61363.
- 62M. Zhu, J. Liu, J. Su, B. Meng, Y. Feng, B. Jia, T. Peng, Z. Qi, E. Gao, Appl. Organomet. Chem. 2019, 33, e4676.