Zirconium (IV) porphyrin graphene oxide: a new and efficient catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones
Zohreh Ghadamyari
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorCorresponding Author
Ali Shiri
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Correspondence
Ali Shiri, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad. Mashhad, Iran.
Email: [email protected]
Search for more papers by this authorAmir Khojastehnezhad
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorSeyed Mohammad Seyedi
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorZohreh Ghadamyari
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorCorresponding Author
Ali Shiri
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Correspondence
Ali Shiri, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad. Mashhad, Iran.
Email: [email protected]
Search for more papers by this authorAmir Khojastehnezhad
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorSeyed Mohammad Seyedi
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Search for more papers by this authorAbstract
A covalently cross-linked graphene oxide (GO) as a catalyst was prepared by a cross-linking process using the nucleophilic reaction of zirconium (IV)-coordinated 5,10,15,20-tetrakis (aminophenyl)porphyrin (ZrPPh) with carboxyl groups of the edges of GO (GO-ZrPPh). The chemical structure of catalyst was characterized by different analyses such as FT-IR, SEM, TEM, EDS, ICP, TGA and UV. All analyses confirm the occurrence of successfully covalent immobilization of ZrPPh on the GO. Also, TEM and SEM images show that ZrPPh has been immobilized in the both of the edges and the basal plane of GO. The activity of the catalyst was studied for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones via Biginelli reaction. The cross-linked catalyst is able to catalyze the reaction in short reaction times and good to excellent yields.
Highlights
- Green and heterogeneous catalyst for synthesis of 3,4-dihydropyrimidin-2(1H)-ones.
- Organic–inorganic hybrid cross-linked graphene oxide catalyst.
- Preparation of Zr-porphyrin-graphene oxide catalyst.
- Reusable catalyst for at least for six runs.
REFERENCES
- 1(a) A. Farokhi, H. Hosseini-Monfared, New J. Chem. 2016, 40, 5032. (b) S. Muratsugu, H. Baba, T. Tanimoto, K. Sawaguchi, S. Ikemoto, M. Tasaki, Y. Terao, M. Tada, Chem. Commun. 2018, 54(40), 5114. (c) M. Otte, P. F. Kuijpers, O. Troeppner, I. Ivanović-Burmazović, J. N. Reek, B. de Bruin, Chem. A Eur. J. 2014, 20, 4880.
- 2M.-G. Fan, Z.-C. Luo, G. Huang, F. Xiang, Y.-A. Guo, H. Zhou, J. Exp. Nanosci. 2013, 8, 640.
- 3(a) S. Sajjadifar, K. Pal, H. Jabbari, O. Pouralimardan, F. Divsar, S. Mohammadi-Aghdam, I. Amini, H. Hamidi, Chem. Methodol. 2019, 3, 226. (b) A. Zare, M. Dianat, N. Varavi, M. H. Aali-Hosaini, Iran. Chem. Commun, Deisi 2019, 7, 529. (c) G. Sandhya Rani, A. Jyotsna, P. Devi, L. Bethala, J. Asian, Green Chem. 2018, 3, 125. (d) U. U. Shaikh, Q. Tamboli, S. Pathange, Z. A. Dahan, Z. Pudukulathan, Chem. Methodol. 2018, 2, 73. (e) R. Motamedi, F. Ebrahimi, G. Rezanejade Bardajee, Asian J. Green Chem. 2019, 3, 22. (f) S. Sajjadifar, G. Mansouri, S. Miraninezhad, Asian J. Nanosci. Mat. 2018, 1, 11.
- 4C. Sun, B. Hu, D. Zhao, Z. Liu, J. Appl. Polym. Sci. 2012, 125, E79.
- 5X. Guo, D.-H. Shen, Y.-Y. Li, M. Tian, Q. Liu, C.-C. Guo, Z.-G. Liu, J. Mol, Catal. A Chem. 2011, 351, 174.
- 6Q. Zhu, S. Maeno, M. Sasaki, T. Miyamoto, M. Fukushima, Appl Catal B 2015, 163, 459.
- 7B. Gao, J. Zhao, Y. Li, J. Appl. Polym. Sci. 2011, 122, 406.
- 8M. J. Calvete, M. Silva, M. M. Pereira, H. D. Burrows, RSC Adv. 2013, 3, 22774.
- 9(a) S. Rayati, P. Jafarzadeh, S. Zakavi, Inorg. Chem. Comm. 2013, 29, 40. (b) M. Araghi, F. Bokaei, Polyhedron 2013, 53, 15.
- 10A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
- 11K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 12S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217.
- 13 R. F. Service, Science 2009, 324, 875.
- 14M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, ACS Nano 2009, 3, 3884.
- 15S. Park, N. Mohanty, J. W. Suk, A. Nagaraja, J. An, R. D. Piner, W. Cai, D. R. Dreyer, V. Berry, R. S. Ruoff, Adv. Mater. 2010, 22, 1736.
- 16H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan, Z. Zheng, Adv. Mater. 2010, 22, 4872.
- 17S. Myung, J. Park, H. Lee, K. S. Kim, S. Hong, Adv. Mater. 2010, 22, 2045.
- 18M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498.
- 19M. Liang, L. Zhi, J. Mater. Chem. 2009, 19, 5871.
- 20B. Seger, P. V. Kamat, J. Phys. Chem. C 2009, 113, 7990.
- 21J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Appl. Phys. Lett. 2008, 92, 237.
- 22(a) J. Pyun, Angew. Chem. Int. 2011, 50, 46. (b) M. Alem, S. Kazemi, A. Teimouri, H. Salavati, Asian J. Green Chem. 2019, 3, 366. (c) Z. Hoseini, A. Davoodnia, A. M. Khojastehnezhad, Iran. Chem. Commun, Pordel 2019, 7, 574.
- 23H.-X. Wang, K.-G. Zhou, Y.-L. Xie, J. Zeng, N.-N. Chai, J. Li, H.-L. Zhang, Chem. Commun. 2011, 47, 5747.
- 24M. B. M. Krishna, N. Venkatramaiah, R. Venkatesan, D. N. Rao, J. Mater. Chem. 2012, 22, 3059.
- 25R. Fareghi-Alamdari, M. Golestanzadeh, O. Bagheri, RSC Adv. 2016, 6, 108755.
- 26H. G. Alvim, T. B. Lima, A. L. de Oliveira, H. C. de Oliveira, F. M. Silva, F. C. Gozzo, R. Y. Souza, W. A. da Silva, B. A. Neto, J. Org. Chem. 2014, 79, 3383.
- 27P. Salehi, M. Dabiri, M. A. Zolfigol, M. A. B. Fard, Tetrahedron Lett. 2003, 44, 2889.
- 28E. Kolvari, N. Koukabi, O. Armandpour, Tetrahedron 2014, 70, 1383.
- 29E. Kolvari, N. Koukabi, M. M. Hosseini, M. Vahidian, E. Ghobadi, RSC Adv. 2016, 6, 7419.
- 30D. Elhamifar, A. Shabani, Chem. A Eur. J. 2014, 20, 3212.
- 31Y. Guo, Z. Gao, X. Meng, G. Huang, H. Zhong, H. Yu, X. Ding, H. Tang, C. Zou, Synlett 2017, 28, 2041.
- 32(a) H. Eshghi, A. Khojastehnezhad, F. Moeinpour, S. Rezaeian, M. Bakavoli, M. Teymouri, A. Rostami, K. Haghbeen, Tetrahedron 2015, 71, 436. (b) B. Maleki, N. Nasiri, R. Tayebee, A. Khojastehnezhad, H. A. Akhlaghi, RSC Adv. 2016, 6, 79128. (c) B. Maleki, H. Eshghi, M. Barghamadi, N. Nasiri, A. Khojastehnezhad, S. S. Ashrafi, O. Pourshiani, Res. Chem. Intermed. 2016, 42, 3071. (d) A. Javid, A. Khojastehnezhad, M. Heravi, F. F. Bamoharram, Inorg. Nano-Met. Chem. 2012, 42, 14. (e) B. Maleki, E. Sheikh, E. R. Seresht, H. Eshghi, S. S. Ashrafi, A. Khojastehnezhad, H. Veisi, Org. Prep. Proced. Int. 2016, 48, 37.
- 33M. Yuasa, K. Oyaizu, A. Yamaguchi, M. Kuwakado, J. Am. Chem. Soc. 2004, 126, 11128.
- 34S. Peng, X. Fan, S. Li, J. Zhang, J. Chil. Chem. Soc. 2013, 58, 2213.
- 35P. Ramesh, S. Bhagyalakshmi, S. Sampath, J. Colloid Interface Sci. 2004, 274, 95.
- 36(a) L. Jiang, L. Cui, X. He, J. Solid State Electrochem. 2015, 19, 497. (b) R. Zeng, G. Chen, C. Xiong, G. Li, Y. Zheng, J. Chen, Y. Long, S. Chen, Appl. Surf. Sci. 2018, 434, 756. (c) N. A. Kumar, R. R. Gaddam, M. Suresh, S. R. Varanasi, D. Yang, S. K. Bhatia, X. Zhao, J. Mater. Chem. 2017, 5, 13204.
- 37T. Poursaberi, M. Hassanisadi, K. Torkestani, M. Zare, Chem. Eng. J. 2012, 189, 117.
- 38W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
- 39B. C. Bookser, T. C. Bruice, J. Am. Chem. Soc. 1991, 113, 4208.
- 40M. Zeinali-Dastmalbaf, A. Davoodnia, M. M. Heravi, N. Tavakoli-Hoseini, A. Khojastehnezhad, H. A. Zamani, Bull. Korean Chem. Soc. 2011, 32, 656.
- 41S. Nagarajan, T. M. Shaikh, E. Kandasamy, J. Chem. Sci. 2015, 127, 1539.
- 42J. Safari, S. Gandomi-Ravandi, J. Mol. Struct. 2014, 1065, 241.
- 43A. N. Dadhania, V. K. Patel, D. K. Raval, J. Braz. Chem. Soc. 2011, 22, 511.
- 44F. Heidarizadeh, E. R. Nezhad, S. Sajjadifar, Sci. Iran. 2013, 20, 561.
- 45S. Asghari, M. Tajbakhsh, B. J. Kenari, S. Khaksar, Chin. Chem. Lett. 2011, 22, 127.
- 46D. L. Da Silva, S. A. Fernandes, A. A. Sabino, Â. de Fátima, Tetrahedron Lett. 2011, 52, 6328.
- 47A. Debache, R. Boulcina, R. Tafer, A. Belfaitah, S. Rhouati, B. Carboni, Chin. J. Chem. 2008, 26, 2112.
- 48A. Kumar, R. A. Maurya, J. Mol, Catal. A Chem. 2007, 272, 53.
- 49M. Gopalakrishnan, P. Sureshkumar, J. Thanusu, V. Kanagarajan, M. R. Ezhilarasi, Lett. Org. Chem. 2008, 5, 142.
- 50E. Tabrizian, A. Amoozadeh, T. Shamsi, Reac. Kinet. Mech. Cat. 2016, 119, 245.
- 51C. S. Reddy, M. Raghu, Chin. Chem. Lett. 2008, 19, 775.
- 52A. G. Sathicq, D. M. Ruiz, T. Constantieux, J. Rodriguez, G. P. Romanelli, Synlett 2014, 25, 881.
- 53S. B. Sapkal, K. F. Shelke, B. B. Shingate, M. S. Shingare, Tetrahedron Lett. 2009, 50, 1754.