Experimental and computational exploration of photophysical and electroluminescent properties of modified 2,2′:6′,2″-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine ligands and their Re(I) complexes
Tomasz Klemens
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorAnna Świtlicka
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorAgata Szlapa-Kula
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorStanisław Krompiec
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorPiotr Lodowski
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorAnna Chrobok
Faculty of Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
Search for more papers by this authorMagdalena Godlewska
Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PO Box 58, 01-224 Warszawa, Poland
Search for more papers by this authorSonia Kotowicz
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorMariola Siwy
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
Search for more papers by this authorKatarzyna Bednarczyk
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorMarcin Libera
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorSebastian Maćkowski
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziądzka Str., 87-100 Torun, Poland
Search for more papers by this authorTomasz Pędziński
Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska, 61-614 Poznań, Poland
Search for more papers by this authorCorresponding Author
Ewa Schab-Balcerzak
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
Correspondence
Schab-Balcerzak and Barbara Machura, Institute of Chemistry, University of Silesia 9 Szkolna Str., 40-006 Katowice, Poland.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Barbara Machura
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Correspondence
Schab-Balcerzak and Barbara Machura, Institute of Chemistry, University of Silesia 9 Szkolna Str., 40-006 Katowice, Poland.
Email: [email protected]; [email protected]
Search for more papers by this authorTomasz Klemens
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorAnna Świtlicka
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorAgata Szlapa-Kula
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorStanisław Krompiec
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorPiotr Lodowski
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorAnna Chrobok
Faculty of Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
Search for more papers by this authorMagdalena Godlewska
Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PO Box 58, 01-224 Warszawa, Poland
Search for more papers by this authorSonia Kotowicz
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorMariola Siwy
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
Search for more papers by this authorKatarzyna Bednarczyk
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorMarcin Libera
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Search for more papers by this authorSebastian Maćkowski
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziądzka Str., 87-100 Torun, Poland
Search for more papers by this authorTomasz Pędziński
Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska, 61-614 Poznań, Poland
Search for more papers by this authorCorresponding Author
Ewa Schab-Balcerzak
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
Correspondence
Schab-Balcerzak and Barbara Machura, Institute of Chemistry, University of Silesia 9 Szkolna Str., 40-006 Katowice, Poland.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Barbara Machura
Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland
Correspondence
Schab-Balcerzak and Barbara Machura, Institute of Chemistry, University of Silesia 9 Szkolna Str., 40-006 Katowice, Poland.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
The excited-state characteristics of a series of 2,2′:6′,2″-terpyridine (terpy), 2,6-di(thiazol-2-yl)pyridine (dtpy) and 2,6-di(pyrazin-2-yl)pyridine (dppy) derivatives as well as their corresponding Re(I) complexes [ReCl(CO)3(Ln-κ2N)] were investigated both experimentally and theoretically, and the crucial effect of pyrrolidine substituent and peripheral rings on the optical and electrochemical properties was found evident. For Re(I) complexes bearing the ligands with electron-rich pyrrolidine substituent, different emission profiles were found in polar and non-polar solvents, indicating a change in the character of the excited state. Dual-emission effect of [ReCl(CO)3(L4-κ2N)] and [ReCl(CO)3(L5-κ2N)] in chloroform was attributed to the presence of two emitting states, identified as an 1ILCT excited state deactivated at higher energies and a longer-lived red-shifted phosphorescence assigned to the 3MLCT excited state. The triplet excited state was confirmed by recording the nanosecond time-resolved transient absorption spectra for the compound [ReCl(CO)3(L4-κ2N)]. To verify the charge transfer problem of low-lying excited states of the free ligands, the Λ parameter was calculated. In addition, the compounds were applied as emitting layers for both non-doped and doped single-layer organic light-emitting diodes fabricated by solution processing.
Supporting Information
Filename | Description |
---|---|
aoc4611-sup-0001-Data_S1.docxWord 2007 document , 4.5 MB |
Figure S1. The synthetic route of 2,2′:6′,2′′-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine derivatives. Figure S2. IR spectra of complexes 1-6. Figure S3. Aromatic region of 1H NMR spectra of ligand L4 and complex 4 in d6-DMSO, showing clear differentiation between proton signals from outer 2-pyridyl rings of coordinated ligand. Figure S4. 1H NMR spectra of ligands L1-L6 in CDCl3. Figure S5. 13C NMR spectra of ligands L1-L6 in CDCl3. Figure S6. 1H NMR spectra of compounds 1-6 (1, 3, 4, 6 in DMSO-d6, 2 and 5 in acetone-d6). Figure S7. 13C NMR spectra of compounds 1, 3 and 4 in DMSO-d6. Figure S8. MS spectra of complexes 1-6. Figure S9. A perspective views of showing the molecular structures of 1–3 with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Figure S10. Hirshfeld surface mapped with dnorm along (a), and 2D fingerprint plots (b) for 1–6, together with the relative contributions of various intermolecular interactions to the Hirshfeld surfaces Table S1. Experimental and theoretical bond lengths [Å] and angles [°] for 1–6. Table S2. Short intra- and intermolecular contacts detected in the structures of the rhenium(I) complexes. Table S3. Short π•••π interactions Table S4. Crystal data and structure refinement of 1–6. Table S5. Thermal properties of studied compounds. Figure S11. DSC curves of ligand L5 and its complex 5, registered for first and second heating scan. Table S6. The electrochemical properties of free ligands L1–L6 and Re(I) complexes (1-6). Figure S12. UV-Vis spectra of L1-L6 in MeCN (a) and CHCl3 with photoluminescence spectrum of PVK:PBD matrix (b). Figure S13. UV-Vis spectra of 1-6 in MeCN (a) and CHCl3 with photoluminescence spectrum of PVK:PBD matrix (b). Figure S14. UV-vis spectra of ligands L1 and L4 and its complexes 1 and 6 as thin films on glass substrate together with PL spectrum of PVK:PBD matrix. Table S7. The absorption maxima and molar extinction coefficient values for the free ligands (L1-L6) and complexes [ReCl(CO)3(Ln-κ2N)] (1-6).) |
aoc4611-sup-0002-Data_S2.docxWord 2007 document , 7.4 MB |
Figure S15. Luminescent properties of L1-L6 ligands and 1-6 complexes in solid state, low temperature glass matrix (EtOH:MeOH, 4:1 v/v), acetonitrile and chloroform solutions. Figure S16. Chromaticity plots for compounds L1-L6 and complexes 1-6 in solution (a – MeCN, b – CHCl3) and solid state(c). Table S8. Summary of photoluminescent properties of ligands L1-L6. Table S9. Summary of photoluminescent properties of Re(I) complexes (1-6) Table S10. Calculated Onsager cavity radius (a). Figure S17. PL spectra of selected compounds in the form of a layer on glass under different excitation wavelengths (a) of L1 and L4 and (b) of 1 and 4 and (c) the energy diagram of ligands and complexes. Figure S18. Comparison of PL spectra of ligand L1 and L6 in film, solution and in blend together with emission of PVK:PBD matrix a),b); comparison of PL spectra of complexes 1 and 6 in film, solution and in blend c), d). Figure S19. Emission spectra of complexes 1-6 in EtOH:MeOH (4:1) glass matrix in 77K. Figure S20. EL spectra of diodes based on ligands L1-L4 and L6 and complexes 1-5. Figure S21. Normalized emission spectra of complexes 1-6 in solid state. Figure S22. Experimental (black line) absorption spectra and calculated transitions (red) of ligands L1-L6. Figure S23. Experimental (black line) absorption spectra and calculated transitions (red) of complexes 1-6. Table S11. The energies and characters of the selected spin-allowed electronic transitions for L1 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S12. The energies and characters of the selected spin-allowed electronic transitions for L2 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S13. The energies and characters of the selected spin-allowed electronic transitions for L3 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S14. The energies and characters of the selected spin-allowed electronic transitions for L4 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S15. The energies and characters of the selected spin-allowed electronic transitions for L5 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S16. The energies and characters of the selected spin-allowed electronic transitions for L6 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S17. The energies and characters of the selected spin-allowed electronic transitions for 1 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S18. The energies and characters of the selected spin-allowed electronic transitions for 2 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S19. The energies and characters of the selected spin-allowed electronic transitions for 3 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S20. The energies and characters of the selected spin-allowed electronic transitions for 4 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S21. The energies and characters of the selected spin-allowed electronic transitions for 5 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Table S22. The energies and characters of the selected spin-allowed electronic transitions for 6 calculated with the TDDFT/PBE1PBE method, together with assignment to the experimental absorption bands. Figure S24. TD-DFT and MS-CASPT2 values of excitations energy for S2 electronic state of L4. The black dotted line corresponds to the energy (3.70 eV) for the maximum of lowest band in the experimental absorption spectrum. Table S23. Parameter Λ, oscillator strength, composition and transition character for ten low-lying TDDFT electronic singlet states of L1 and L4 ligands. Results based on the PBE1PBE/def2-TZVP calculations with use PCM solvent model. Table S24. MS-CASPT2 electronic states for L1 ligand. Table S25. MS-CASPT2 electronic states for L4 ligand. Table S26. Calculated phosphorescence emission energies (DFT/PBE1PBE/DEF2-TZVPD/DEF2-TZVP) of 1–6, compared to the experimental values recorded in acetonitrile solution. Figure S25. Active space CAS(12,12) used in CAS/MS-CASPT2 calculations for L1 ligand. Figure S26. Active space CAS(12,12) used in CAS/MS-CASPT2 calculations for L4 ligand. Figure S27. Frontier molecular orbitals of complexes 1-6. Figure S28. Isodensity surface plots of the LSOMO and HSOMO for the complexes 1–6 at their T1 TD-DFT state geometry. Blue and grey colours show regions of positive and negative spin density values, respectively. Figure S29. Isodensity surface plots of the LSOMO and HSOMO for the complexes 1 and 4 at their T1 TD-DFT state geometry. Blue and grey colours show regions of positive and negative spin density values, respectively. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a) D. J. Stufkens, A. Vlček Jr., Coord. Chem. Rev. 1998, 177, 127. b) R. A. Kirgan, B. P. Sullivan, D. P. Rillema, Top. Curr. Chem. 2007, 281, 45. c) A. Cannizzo, A. M. Blanco-Rodríguez, A. El Nahhas, J. Šebera, S. Záliš, A. Vlček Jr., M. Chergui, J. Am. Chem. Soc. 2008, 130(28), 8967. d) A. Kumar, A. S. Sun, A. J. Lees, Top. Organometal. Chem. 2010, 29, 1. e) A. Vlček Jr., Top. Organometal. Chem. 2010, 29, 73. f) R. Baková, M. Chergui, C. Daniel, A. Vlček Jr., S. Záliš, Coord. Chem. Rev. 2011, 255, 975. gS. Záliš, C. J. Milne, A. El Nahhas, A. M. Blanco-Rodríguez, R. M. van der Veen, A. Vlček Jr., Inorg. Chem. 2013, 52(10), 5775. h)A. El Nahhas, R. M. van der Veen, T. J. Penfold, V. T. Pham, F. A. Lima, R. Abela, A. M. Blanco-Rodriguez, S. Zális̆, A. Vlc̆ek, I. Tavernelli, U. Rothlisberger, C. J. Milne, M. Chergui, J. Phys. Chem. A 2013, 117(2), 361. i) C. Daniel, Coord. Chem. Rev. 2015, 282–283, 19. j) K. M.-C. Wong, C. Wang, H.-C. Lam, N. Zhu, Polyhedron 2015, 86, 133. k) A. Świtlicka-Olszewska, T. Klemens, I. Nawrot, B. Machura, R. Kruszynski, J. Lumin. 2016, 171, 166. l) A. Świtlicka, T. Klemens, B. Machura, E. Schab-Balcerzak, K. Laba, M. Lapkowski, M. Grucela, J. Nycz, M. Szala, M. Kania, RSC Adv. 2016, 6, 112908. m) S. Mai, H. Gattuso, M. Fumanal, A. Munoz-Losa, A. Monari, C. Daniel, L. González, Phys. Chem. Chem. Phys. 2017, 19, 27240. n) C.-C. Ko, V. Wing-Wah Yam, Acc. Chem. Res. 2018, 51, 149. o) D. A. Kurtz, K. R. Brereton, K. P. Ruoff, H. M. Tang, G. A. N. Felton, A. J. M. Miller, J. L. Dempsey, Inorg. Chem. 2018, 57, 5389.
- 2M. Wrighton, D. L. Morse, J. Am. Chem. Soc. 1974, 96, 998.
- 3a) T. Morimoto, J. Tanabe, K. Sakamoto, K. Koike, O. Ishitani, Res. Chem. Intermed. 2013, 39, 437. b) E. Portenkirchner, D. Apaydin, G. Aufischer, M. Havlicek, M. White, M. C. Scharber, N. Serdar Sariciftci, ChemPhysChem 2014, 15, 3634. c) A. Zarkadoulas, E. Koutsouri, C. Kefalidi, C. A. Mitsopoulou, Coord. Chem. Rev. 2015, 304–305, 55. d) J. K. Nganga, C. R. Samanamu, J. M. Tanski, C. Pacheco, C. Saucedo, V. S. Batista, K. A. Grice, M. Z. Ertem, A. M. Angeles-Boza, Inorg. Chem. 2017, 56, 3214. e) J. F. Martinez, N. T. La Porte, M. R. Wasielewski, J. Phys. Chem. C 2018, 122, 2608.
- 4a) R.-R. Ye, C.-P. Tan, M.-H. Chen, L. Hao, L.-N. Ji, Z.-W. Mao, Chem. Eur. J. 2016, 22, 7800. b) S. Hostachy, C. Policar, N. Delsuc, Coord. Chem. Rev. 2017, 351, 172. c) L. C.-C. Lee, K.-K. Leung, K. Kam-Wing Lo, Dalton Trans. 2017, 46, 16357. d) M. T. Gabr, F. C. Pigge, Dalton Trans. 2017, 46, 15040.
- 5a) C.-O. Ng, S.-W. Lai, H. Feng, S.-M. Yiu, C.-C. Ko, Dalton Trans. 2011, 40, 10020. b) K. K.-W. Lo, M.-W. Louie, K. Y. Zhang, 18th Int. Symp. Photochem. Photophys. Coord. Compd. Sapporo 2009 2010, 254, 2603. c) G. Xu, M. Lu, C. Huang, Y. Wang, S. Ge, Spectrochim. Acta. A 2014, 123, 369. d) A. Ramdass, V. Sathish, E. Babu, M. Velayudham, P. Thanasekaran, S. Rajagopal, Coord. Chem. Rev. 2017, 343, 278. e) A. Ramdass, V. Sathish, M. Velayudham, P. Thanasekaran, S. Umapathy, S. Rajagopal, Sens. Actuators B 2017, 240, 1216.
- 6a) A. Fernández-Acebes, J.-M. Lehn, Chem. Eur. J. 1999, 5, 3285.
10.1002/(SICI)1521-3765(19991105)5:11<3285::AID-CHEM3285>3.0.CO;2-Q CAS Web of Science® Google Scholarb) S.-S. Sun, E. Robson, N. Dunwoody, A. S. Silva, I. M. Brinn, A. J. Lees, Chem. Commun. 2000, 201. c) J. D. Lewis, R. N. Perutz, J. N. Moore, Chem. Commun. 2000, 1865. d) A. O. T. Patrocinio, K. P. M. Frin, N. Y. Murakami Iha, Inorg. Chem. 2013, 52, 5889. e) V. Sathish, A. Ramdass, P. Thanasekaran, K.-L. Lu, S. Rajagopal, J. Photochem, C 2015, 23, 25.
- 7a) R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093. b) M. V. Werrett, G. S. Huff, S. Muzzioli, V. Fiorini, S. Zacchini, B. W. Skeleton, A. Maggiore, J. M. Malicka, M. Cocchi, K. C. Gordon, S. Stagni, M. Massi, Dalton Trans. 2015, 8379. c) G.-W. Zhao, J.-H. Zhao, Y.-X. Hu, D.-Y. Zhang, X. Li, Synth. Met. 2016, 212, 131. d) Y.-X. Hu, G.-W. Zhao, Y. Dong, Y.-L. Lü, X. Li, D.-Y. Zhang, Dyes Pigm 2017, 137, 569. e) X. Li, G.-W. Zhao, Y.-X. Hu, J.-H. Zhao, Y. Dong, L. Zhou, Y.-L. Lv, H.-J. Chi, Z.-J. Su, Mater. Chem. C 2017, 5, 7629.
- 8a) A. I. Baba, J. R. Shaw, J. A. Simon, R. P. Thummel, R. H. Schmehl, Coord. Chem. Rev. 1998, 171, 43. b) M. P. Coogan, V. Fernández-Moreira, B. M. Kariuki, S. J. A. Pope, F. L. Thorp-Greenwood, Angew. Chem. Int. Ed. 2009, 48, 4965. c) A. J. Amoroso, A. Banu, M. P. Coogan, P. G. Edwards, G. Hossain, K. M. A. Malik, Dalton Trans. 2010, 39, 6993. d) F. Zhao, W. Q. Liu, H. Ying Xia, Y. Bo Wang, Comput. Theor. Chem. 2012, 997, 49. e) D. Wang, Q.-L. Xu, S. Zhang, H.-Y. Li, C.-C. Wang, T.-Y. Li, Y. M. Jing, W. Huang, Y. X. Zheng, G. Accorsi, Dalton Trans. 2013, 42, 2716. f) H. van der Salm, C. B. Larsen, J. R. W. McLay, M. G. Fraser, N. T. Lucas, K. C. Gordon, Dalton Trans. 2014, 43, 17775. g) B. Laramee-Milette, C. Lachance-Brais, G. S. Hanan, Dalton Trans. 2015, 44, 41. h) T. Klemens, A. Switlicka-Olszewska, B. Machura, M. Grucela, E. Schab-Balcerzak, K. Smolarek, A. Mackowski, A. Szlapa, S. Kula, S. Krompiec, P. Lodowski, A. Chrobok, Dalton Trans. 2016, 45, 1746. i) T. Klemens, A. Świtlicka-Olszewska, B. Machura, M. Grucela, H. Janeczek, E. Schab-Balcerzak, A. Szlapa, S. Kula, S. Krompiec, K. Smolarek, D. Kowalska, S. Mackowski, K. Erfurt, P. Lodowski, RSC Adv. 2016, 6, 56335. j) L. D. Ramos, R. N. Sampaio, F. F. de Assis, K. T. de Oliveira, P. Homem-de-Mello, A. O. T. Patrocinio, K. P. M. Frin, Dalton Trans. 2016, 45, 11688.
- 9a) Y. Yue, T. Grusenmeyer, Z. Ma, P. Zhang, T. Tat Pham, J. T. Mague, J. P. Donahue, R. H. Schmehl, D. N. Beratan, I. V. Rubtsov, J. Phys. Chem. B 2013, 117, 15903. b) Y.-X. Peng, D. Xu, N. Wang, T. Tao, B. Hua, W. Huang, Tetrahedron 2016, 72, 3443.
- 10a) C. Jia, S.-X. Liu, C. Tanner, C. Leiggener, A. Neels, L. Sanguinet, E. Levillain, S. Leutwyler, A. Hauser, S. Decurtins, Chem. Eur. J. 2007, 13, 3804. b) M. G. Fraser, A. G. Blackman, G. I. S. Irwin, C. P. Easton, K. C. Gordon, Inorg. Chem. 2010, 49, 5180. c) C. B. Larsen, H. van der Salm, C. A. Clark, A. B. S. Elliott, M. G. Fraser, R. Horvath, N. T. Lucas, X.-Z. Sun, M. W. George, K. C. Gordon, Inorg. Chem. 2014, 53, 1339. d) H. van der Salm, C. B. Larsen, J. R. W. McLay, G. S. Huff, K. C. Gordon, Inorg. Chim. Acta 2015, 428, 1. e) C. B. Larsen, H. van der Salm, G. E. Shillito, N. T. Lucas, K. C. Gordon, Inorg. Chem. 2016, 55, 8446. f) B. S. Adams, G. E. Shillito, H. van der Salm, R. Horvath, C. B. Larsen, X.-Z. Sun, N. T. Lucas, M. W. George, K. C. Gordon, Inorg. Chem. 2017, 56, 12967.
- 11a) L. D. Ramos, R. N. Sampaio, F. F. de Assis, K. T. de Oliveira, P. Homem-de-Mello, A. O. T. Patrocinio, K. P. M. Frin, Dalton Trans. 2016, 45, 11688.
- 12a) G. S. Huff, W. K. C. Lo, R. Horvath, J. O. Turner, X.-Z. Sun, G. R. Weal, H. J. Davidson, A. D. W. Kennedy, C. J. McAdam, J. D. Crowley, M. W. George, K. C. Gordon, Inorg. Chem. 2016, 55, 12238. b) G. E. Shillito, T. B. J. Hall, D. Preston, P. Traber, L. Wu, K. E. A. Reynolds, R. Horvath, X. Z. Sun, N. T. Lucas, J. D. Crowley, M. W. George, S. Kupfer, K. C. Gordon, J. Am. Chem. Soc. 2018, 140, 4534.
- 13H. van der Salm, M. G. Fraser, R. Horvath, J. O. Turner, G. M. Greetham, I. P. Clark, M. Towrie, N. T. Lucas, M. W. George, K. C. Gordon, Inorg. Chem. 2014, 53, 13049.
- 14K. S. Kisel, T. Eskelinen, W. Zafar, A. I. Solomatina, P. Hirva, E. V. Grachova, S. P. Tunik, I. O. Koshevoy, Inorg. Chem. 2018, 57(11), 6349.
- 15a) J. Wang, G. Hanan, Synlett 2005, 2005, 1251. b) Z. Yin, G. Zhang, T. Phoenix, S. Zheng, J. C. Fettinger, RSC Adv. 2015, 5, 36156. c) A. Maroń, A. Szlapa, T. Klemens, S. Kula, B. Machura, S. Krompiec, J. G. Małecki, A. Świtlicka-Olszewska, K. Erfurt, A. Chrobok, Org. Biomol. Chem. 2016, 14, 3793. d) A. Maroń, S. Kula, A. Szlapa-Kula, A. Świtlicka, B. Machura, S. Krompiec, Eur. J. Org. Chem. 2017, 2017, 2730.
- 16D. G. Vargas-Pineda, T. Guardado, F. Cervantes-Lee, A. J. Metta-Magana, K. H. Pannell, Inorg Chem. 2010, 49, 960.
- 17I. R. de Moraes, S. Scholz, M. Hermenau, M. L. Tietze, T. Schwab, S. Hofmann, M. C. Gather, K. Leo, Org. Electron. 2015, 26, 158.
- 18P. Bujak, I. Kulszewicz-Bajer, M. Zagorska, V. Maurel, I. Wielgus, A. Pron, Chem. Soc. Rev. 2013, 42, 8895.
- 19a) B. Laramee-Milette, C. Lachance-Brais, G. S. Hanan, Dalton Trans. 2015, 44, 41. b) C.-C. Ko, L. T.-L. Lo, C.-O. Ng, S.-M. Yiu, Chem. Eur J. 2010, 16, 13773. c) Q.-H. Wei, F.-N. Xiao, L.-J. Han, S.-L. Zeng, Y.-N. Duan, G.-N. Chen, Dalton Trans. 2011, 40, 5078. d) D. Wang, Q.-L. Xu, S. Zhang, H.-Y. Li, C.-C. Wang, T.-Y. Li, Y. M. Jing, W. Huang, Y. X. Zheng, G. Accorsi, Dalton Trans. 2013, 42, 2716. e) P. Gomez-Iglesias, F. Guyon, A. Khatyr, G. Ulrich, M. Knorr, J. M. Martin-Alvarez, D. Miguel, F. Villafane, Dalton Trans. 2015, 44, 17516.
- 20L. D. Ramos, R. N. Sampaio, F. F. de Assis, K. T. de Oliveira, P. Homem-de-Mello, A. O. T. Patrocinio, K. P. M. Frin, Dalton Trans. 2016, 45, 11688.
- 21a) S. Kim, T. K. An, J. Chen, I. Kang, S. H. Kang, D. S. Chung, C. E. Park, Y.-H. Kim, S.-K. Kwon, Adv. Funct. Mater. 2011, 21, 1616. b) Y. Zhang, L. Zhang, H. Liu, D. Sun, X. Li, CrystEngComm 2015, 17, 1453.
- 22M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT, USA 2009.
- 23T. Mutai, J. D. Cheon, S. Arita, K. Araki, J. Chem. Soc. Perkin Trans. 2 2001, 1045.
- 24a G. Rajib, D. K. Palit, J. Phys. Chem. A 2015, 119, 11128. b G. Haberhauer, R. Gleiter, C. Burkhart, Chem. Eur. J. 2016, 22, 971. c G. Haberhauer, Chem. Eur. J. 2017, 23, 9288.
- 25M. Cocchi, J. Kalinowski, L. Murphy, J. A. G. Williams, V. Fattori, Org. Electron. 2010, 11, 388.
- 26a A. J. Lees, Chem Rev. 1987, 87, 711. b D. Wang, Q.-L. Xu, S. Zhang, H.-Y. Li, C.-C. Wang, T.-Y. Li, C. C. Wang, T. Y. Li, Y. M. Jing, W. Huang, Y. X. Zheng, G. Accorsi, Dalton Trans. 2013, 42, 2716.
- 27B. N. Ghosh, F. Topic, P. K. Sahoo, P. Mal, J. Linnera, E. Kalenius, H. M. Tuononen, K. Rissanen, Dalton Trans. 2015, 44, 254.
- 28a Q. Wu, T. Zhang, Q. Peng, D. Wang, Z. Shuai, Phys. Chem. Chem. Phys. 2014, 16, 5545. b T. Zhu, T. Van Voorhis, J. Phys. Chem. C 2016, 120, 19987. c K. Kotwica, P. Bujak, D. Wamil, A. Pieczonka, G. Wiosna-Salyga, P. A. Gunka, T. Jaroch, R. Nowakowski, B. Luszczynska, E. Witkowska, I. Glowacki, J. Ulanski, M. Zagorska, A. Pron, J. Phys. Chem. C 2015, 119, 10700. d S. Jenatsch, L. Wang, N. Leclaire, E. Hack, R. Steim, S. B. Anantharaman, J. Heier, B. Ruhstaller, L. Penninck, F. Nüesch, Org. Electron. 2017, 48, 77.
- 29a M. J. G. Peach, P. Benfield, T. Helgaker, D. J. Tozer, J. Chem. Phys. 2008, 128, 044118. b M. J. G. Peach, C. R. L. Sueur, K. Ruud, M. Guillaume, D. J. Tozer, Phys. Chem. Chem. Phys. 2009, 11, 4465. c J. Plötner, D. J. Tozer, A. Dreuw, J. Chem, Theory Comput. 2010, 6, 2315.
- 30 Agilent Technologies, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK 2012.
- 31G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
- 32a) D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123. b) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297. c) D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 134105.
- 33a) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158. b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 34a) B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 106, 5151. b) E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032. c) M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. 1998, 286, 253.
- 35a) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347. b) M. S. Gordon, M. W. Schmidt, Theory and Applications of Computational Chemistry, Elsevier 2005 1167.
- 36A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 37a) B. O. Roos, in Lecture Notes in Quantum Chemistry, (Ed: B. O. Roos) Vol. 58, Springer, Berlin 1992 177.
10.1007/978-3-642-58150-2_4 Google Scholarb) B. O. Roos, in Advances in Chemical Physics, (Ed: K. P. Lawley) Vol. 69, John Wiley & Sons, Inc., Hoboken, NJ, USA 1987 399.
- 38a) K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski, J. Phys. Chem. 1990, 94, 5483. b) J. Finley, P.-Å. Malmqvist, B. O. Roos, L. Serrano-Andrés, Chem. Phys. Lett. 1998, 288, 299.
- 39a)G. Karlström, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Comput. Mater. Sci. 2003, 28, 222. b)V. Veryazov, P. O. Widmark, L. Serrano-Andrés, R. Lindh, B. O. Roos, Int. J. Quantum Chem. 2004, 100, 626. c)F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, R. Lindh, J. Comput. Chem. 2010, 31, 224. d) The following persons have contributed to the development of the Molcas software: K. Andersson, F. Aquilante, M. Barysz, A. Bernhardsson, M. R.A. Blomberg, J. Boström, Y. Carissan, L. Chibotaru, D. L. Cooper, M. Cossi, M. Delcey, A. Devarajan, L. De Vico, I. F. Galván, N. Ferré, M. P. Fülscher, A. Gaenko, L. Gagliardi, G. Ghigo, C. de Graaf, S. Gusarov, B. A. Hess, D. Hagberg, J. M. Hermida-Ramón, A. Holt, G. Karlström, J. W. Krogh, R. Lindh, P.-Å. Malmqvist, T. Nakajima, P. Neogrády, J. Olsen, T. B. Pedersen, D. Peng, M. Pitonak, J. Raab, M. Reiher, B. O. Roos, U. Ryde, B. Schimmelpfennig, M. Schütz, L. Seijo, L. Serrano-Andrés, I. Schapiro, P. E. M. Siegbahn, J. Stålring, B. Suo, P. Sushko, T. Thorsteinsson, T. Tsuchiya, L. Ungur, S. Vancoillie, V. Veryazov, V. Vysotskiy, P.-O. Widmark.
- 40a) P.-O. Widmark, P.-Å. Malmqvist, B. O. Roos, Theor. Chim. Acta 1990, 77, 291. b) P.-O. Widmark, B. J. Persson, B. O. Roos, Theor. Chim. Acta 1991, 79, 419.