Electrochemical determination of ascorbic acid, uric acid and folic acid using carbon paste electrode modified with novel synthesized ferrocene derivative and core–shell magnetic nanoparticles in aqueous media
Corresponding Author
Sayed Zia Mohammadi
Department of Chemistry, Payame Noor University, Tehran, Iran
Correspondence
Sayed Zia Mohammadi, Department of Chemistry, Payame Noor University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorHadi Beitollahi
Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
Search for more papers by this authorZohreh Dehghan
Department of Chemistry, Payame Noor University, Tehran, Iran
Search for more papers by this authorRahman Hosseinzadeh
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
Search for more papers by this authorCorresponding Author
Sayed Zia Mohammadi
Department of Chemistry, Payame Noor University, Tehran, Iran
Correspondence
Sayed Zia Mohammadi, Department of Chemistry, Payame Noor University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorHadi Beitollahi
Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
Search for more papers by this authorZohreh Dehghan
Department of Chemistry, Payame Noor University, Tehran, Iran
Search for more papers by this authorRahman Hosseinzadeh
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
Search for more papers by this authorAbstract
2-(4-Ferrocenyl-1,2,3-triazol-1-yl)-1-(naphthalen-2-yl)ethanone (2FTNE) and magnetic core–shell manganese ferrite nanoparticles (CMNP) were fabricated and applied to produce a modified carbon paste electrode (CPE). The electrochemical behaviour of ascorbic acid (AA) was investigated using cyclic voltammetry and measured by square wave voltammetry along with that of uric acid (UA) and folic acid (FA). The 2FTNECMNP-modified CPE (2FTNECMNPPE) had electrocatalytic activity towards AA oxidation that was greater than that of bare CPE and CMNP-modified CPE. Based on the results, the linear oxidation peak current was 0.01–60 μM for AA level and the correlation coefficient was 0.9997. According to three times the standard deviation for the blank, the limit of detection was calculated as 0.002 μM. Our results showed an increase in selectivity, stability and reproducibility for 2FTNECMNPPE, which significantly could measure AA, UA and FA levels in AA ampoule, FA tablet and urine samples. It can be concluded that 2FTNECMNPPE has promising capacity in the development of electrochemical sensors.
REFERENCES
- 1O. Arrigoni, M. C. D. Tullio, Biochim. Biophys Acta 2002, 1569, 1.
- 2A. Tai, J. Takebayashi, A. Ueno, F. Gohda, I. Yamamoto, J. Chromatogr. B 2006, 840, 38.
- 3B. N. Chandrashekar, B. E. Kumara Swamy, K. J. Gururaj, C. Cheng, J. Mol. Liq. 2017, 231, 379.
- 4A. Tai, E. Gohda, J. Chromatogr. B 2007, 853, 214.
- 5X. Sun, Y. Niu, S. Bi, S. Zhang, J. Chromatogr. B 2008, 870, 46.
- 6N. Anastos, N. W. Barnett, B. J. Hindson, C. E. Lenehan, S. W. Lewis, Talanta 2004, 64, 130.
- 7R. Thangamuthu, S. M. S. Kumar, K. C. Pillai, Sens. Actuators B 2007, 120, 745.
- 8S. A. Kumar, P. H. Lo, S. M. Chen, Biosens. Bioelectron. 2008, 24, 518.
- 9S. Thiagarajan, T. H. Tsai, S. M. Chen, Biosens. Bioelectron. 2009, 24, 2712.
- 10H. A. Haper, Review of Physiological Chemistry, Lange Medical Publications, San Francisco 1997.
- 11J. B. Wyngaarden, W. N. Kelley, Gout and Hyperuricemia, Grune and Stratton, New York 1976.
- 12M. Mazloum-Ardakani, M. Abolhasani, B. F. Mirjalili, M. A. Sheikh-Mohseni, A. Dehghani-Firouzabadi, A. Khoshroo, Chin. J. Catal. 2014, 35, 201.
- 13M. Mazloum-Ardakani, M. A. Sheikh-Mohseni, A. Benvidi, Electroanalysis 2011, 23, 2822.
- 14D. Hoegger, P. Morier, C. Vollet, D. Heini, F. Reymond, J. S. Rossier, Anal. Bioanal. Chem. 2007, 387, 267.
- 15I. J. Holcomb, S. A. Fusari, Anal. Chem. 1981, 53, 607.
- 16J. F. Gregory, B. P. F. Day, K. A. Ristow, J. Food Sci. 1982, 47, 1568.
- 17A. A. Al-warthan, Anal. Sci. 1994, 10, 919.
- 18M. Jung, B. Kim, D. W. Boo, H. Y. So, Bull. Korean Chem. Soc. 2007, 28, 745.
- 19S. K. Ganguly, H. Bhattachary, Ind. J. Pharm. Sci. 1957, 19, 170.
- 20M. Mazloum-Ardakani, H. Beitollahi, M. A. Sheikh-Mohseni, H. Naeimi, N. Taghavinia, Appl. Catal. A 2010, 378, 195.
- 21H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Anal. Chem. 2014, 80, 9848.
- 22H. Beitollahi, S. Nekooei, M. Torkzadeh Mahani, Talanta 2018, 188, 701.
- 23S. Tajik, M. A. Taher, H. Beitollahi, J. Electroanal. Chem. 2013, 704, 137.
- 24H. Beitollahi, I. Sheikhshoaie, Int. J. Electrochem. Sci. 2012, 7, 7684.
- 25S. Jahani, H. Beitollahi, Electroanalysis 2016, 28, 2022.
- 26S. Z. Mohammadi, H. Beitollahi, M. Jasemi, A. Akbari, Electroanalysis 2015, 27, 2421.
- 27H. Beitollahi, S. Nekooei, Electroanalysis 2016, 28, 645.
- 28H. Beitollahi, S. Ghofrani Ivari, M. Torkzadeh Mahani, Biosens. Bioelectron. 2018, 110, 97.
- 29M. Mazloum-Ardakani, H. Beitollahi, Z. Taleat, H. Naeimi, N. Taghavinia, Int. Electroanal. Chem. 2010, 644, 1.
- 30H. Beitollahi, F. Garkani Nejad, Electroanalysis 2016, 28, 2237.
- 31S. Z. Mohammadi, H. Beitollahi, E. Bani Asadi, Environ. Monit. Assess. 2015, 187, 122.
- 32E. Molaakbari, A. Mostafavi, H. Beitollahi, Sens. Actuators B 2015, 208, 195.
- 33A. Baghizadeh, H. Karimi-Maleh, Z. Khoshnama, A. Hassankhani, M. Abbasghorbani, Food Anal. Methods 2014, 8, 549.
- 34H. Karimi-Maleh, M. Moazampour, A. A. Ensafi, S. Mallakpour, M. Hatami, Environ. Sci. Pollut. Res. 2014, 21, 5879.
- 35H. Karimi-Maleh, M. Moazampour, H. Ahmar, H. Beitollahi, A. A. Ensafi, Measurement 2014, 51, 91.
- 36M. Bijad, H. Karimi-Maleh, M. Farsi, S. A. Shahidi, J. Food Meas. Charact. 2018, 12, 634.
- 37A. A. Ensafi, H. Karimi-Maleh, Int. J. Electrochem. Sci. 2010, 5, 1484.
- 38M. Chirea, E. M. Pereira, C. M. Pereira, F. Silva, Biointerface Res. Appl. Chem. 2011, 1, 119.
- 39C. Saviuc, A. M. Grumezescu, M. C. Chifiriuc, C. Bleotu, G. Stanciu, R. Hristu, D. Mihaiescu, V. Lazar, Biointerface Res. Appl. Chem. 2011, 1, 31.
- 40A. M. Grumezescu, C. Saviuc, A. Holban, R. Hristu, C. Croitoru, G. Stanciu, C. Chifiriuc, D. Mihaiescu, P. Balaure, V. Lazar, Biointerface Res. Appl. Chem. 2011, 1, 160.
- 41D. E. Mihaiescu, A. M. Grumezescu, D. E. Mogosanu, V. Traistaru, P. C. Balaure, A. Buteica, Biointerface Res. Appl. Chem. 2011, 1, 41.
- 42A. S. Buteica, D. E. Mihaiescu, A. M. Grumezescu, B. S. Vasile, A. Popescu, D. Calina, O. M. Mihaiescu, Dig. J. Nanomater. Biostruct. 2010, 5, 651.
- 43R. Cristescu, C. Popescu, G. Socol, I. Iordache, I. N. Mihailescu, D. E. Mihaiescu, A. M. Grumezescu, A. Balan, I. Stamatin, C. Chifiriuc, C. Bleotue, C. Saviuc, M. Popa, D. B. Chrisey, Appl. Surf. Sci. 2012, 258, 9250.
- 44S. Z. Mohammadi, A. Seyedi, Toxicol. Environ. Chem. 2016, 98, 705.
- 45A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York 2001.
- 46M. Motshakeri, J. Travas-Sejdic, A. R. J. Phillips, P. A. Kilmartin, Electrochim. Acta 2018, 256, 184.
- 47L. Zhang, J. Feng, K. C. Chou, L. Su, X. Hou, J. Electroanal. Chem. 2017, 803, 11.
- 48Y. Veera Manohara Reddy, V. Prabhakara Rao, A. Vijaya Bhaskar Reddy, M. Lavanya, M. Venu, M. Lavanya, G. Madhavi, Mater. Sci. Eng. C 2015, 57, 378.
- 49N. Soltani, N. Tavakkoli, N. Ahmadi, F. Davar, C. R. Chim. 2015, 18, 438.
- 50J. C. Kemmegne-Mbouguen, L. Angnes, Sens. Actuators B 2015, 212, 464.
- 51M. Taei, H. Salavati, F. Hasanpour, S. Habibollahi, H. Baghlani, Mater. Sci. Eng. C 2016, 69, 1.
- 52M. A. Khalilzadeh, M. Borzoo, J. Food Drug, Anal. 2016, 24, 796.