Porous Si/TiO2 nanowire photoanode for photoelectric catalysis under simulated solar light irradiation
Zhangxiaoxiong Chen
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorCorresponding Author
Jikai Yang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Correspondence
Jikai Yang, School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130012, China.
Email: [email protected]
Xiaotian Yang, Jilin Provincial Key Laboratory of Architectural Electricity and Comprehensive Energy Saving, Jilin Jianzhu University, Changchun 130118, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xiaotian Yang
Jilin Provincial Key Laboratory of Architectural Electricity and Comprehensive Energy Saving, School of Electrical and Electronic Information Engineering, Jilin Jianzhu University, Changchun, 130118 People's Republic of China
State Key Laboratory of Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012 People's Republic of China
Correspondence
Jikai Yang, School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130012, China.
Email: [email protected]
Xiaotian Yang, Jilin Provincial Key Laboratory of Architectural Electricity and Comprehensive Energy Saving, Jilin Jianzhu University, Changchun 130118, China.
Email: [email protected]
Search for more papers by this authorYiming Zhao
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorJiaqi Kang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorFuyu Yang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorYufei Zhang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorMing Cheng
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorGuozheng Wang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorQingduo Duanmu
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorZhangxiaoxiong Chen
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorCorresponding Author
Jikai Yang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Correspondence
Jikai Yang, School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130012, China.
Email: [email protected]
Xiaotian Yang, Jilin Provincial Key Laboratory of Architectural Electricity and Comprehensive Energy Saving, Jilin Jianzhu University, Changchun 130118, China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xiaotian Yang
Jilin Provincial Key Laboratory of Architectural Electricity and Comprehensive Energy Saving, School of Electrical and Electronic Information Engineering, Jilin Jianzhu University, Changchun, 130118 People's Republic of China
State Key Laboratory of Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012 People's Republic of China
Correspondence
Jikai Yang, School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun 130012, China.
Email: [email protected]
Xiaotian Yang, Jilin Provincial Key Laboratory of Architectural Electricity and Comprehensive Energy Saving, Jilin Jianzhu University, Changchun 130118, China.
Email: [email protected]
Search for more papers by this authorYiming Zhao
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorJiaqi Kang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorFuyu Yang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorYufei Zhang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorMing Cheng
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorGuozheng Wang
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorQingduo Duanmu
School of Science, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130012 People's Republic of China
Search for more papers by this authorAbstract
Porous Si/TiO2 nanowire photoanodes were prepared by a combination of hydrothermal synthesis and metal-assisted chemical etching. Characterization of samples was conducted using scanning electron microscopy and X-ray diffraction, the results showing that a porous Si/TiO2 heterojunction structure was synthesized. Diffuse reflection spectra show that the porous Si/TiO2 nanowire photoanodes have a strong absorption. Photocurrent measurement shows that the photocurrent of the porous Si/TiO2 nanowire photoanodes at 6 h is higher than that of others in the measuring region. The photoelectric catalysis (PEC) activities of porous Si/TiO2 nanowire photoanodes were evaluated in degradation experiments of methylene blue under simulated solar light irradiation, and the sample at 6 h shows the highest PEC activity. Meanwhile, the PEC activity of the porous Si/TiO2 nanowire photoanode is higher than that of the single direct photocatalysis process or electric catalysis. The mechanism of the PEC of the porous Si/TiO2 nanowire photoanodes has been explained.
REFERENCES
- 1A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 2K. Kümmerer, J. Environ. Manage. 2009, 90, 2354.
- 3R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
- 4J. H. Liao, L. Y. Shi, S. Yuan, Y. Zhao, J. H. Fang, J. Phys. Chem. C 2009, 113, 18778.
- 5S. P. Albu, A. Ghicow, J. M. Macak, R. Hahn, P. Schmuki, Nano Lett. 2007, 7, 1286.
- 6K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, P. Schmuki, J. Am. Chem. Soc. 2010, 132, 1478.
- 7K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett. 2007, 7, 69.
- 8Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami, A. Fujishima, J. Phys. Chem. C 2008, 112, 253.
- 9N. Baram, Y. Ein-Eli, J. Phys. Chem. C 2010, 114, 9781.
- 10Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Environ. Sci. Technol. 2010, 44, 5098.
- 11Y. Chen, L. Y. Shi, S. Yuan, J. Wu, M. H. Zhang, J. H. Fang, J. Inorg. Mater. 2009, 24, 680.
- 12X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
- 13M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
- 14W. Liu, C. M. Lieber, Nat. Mater. 2007, 6, 841.
- 15K. Q. Peng, X. Wang, S. T. Lee, Appl. Phys. Lett. 2008, 92, 163103.
- 16A. P. Goodey, S. M. Eichfeld, K. K. Lew, J. M. Redwing, T. E. Mallouk, J. Am. Chem. Soc. 2007, 129, 12344.
- 17A. Mills, R. H. Davies, D. Worsley, Chem. Soc. Rev. 1993, 22, 417.
- 18S. Y. Noh, K. Sun, C. Choi, M. Niu, M. Yang, K. Xu, S. Jin, D. Wang, Nano Energy 2013, 2, 351.
- 19Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 2000, 104, 5213.
- 20E. C. Garnett, P. Yang, J. Am. Chem. Soc. 2008, 130, 9224.
- 21Y. S. Liu, G. B. Ji, J. Y. Wang, X. Q. Liang, Z. W. Zuo, Y. Shi, Nanoscale Res. Lett. 2012, 7, 663.
- 22T. Stelzner, M. Pietsch, K. K. Lew, J. M. Redwing, T. E. Mallouk, J. Am. Chem. Soc. 2007, 129, 12344.
- 23H. Yu, S. Chen, X. Quan, H. M. Zhao, Y. B. Zhang, Appl. Catal. B 2009, 90, 242.
- 24L. Yu, Physics of Semiconductor Heterojunctions (Chinese Edition), 2nd ed., Science Press, Beijing 2006.
- 25Y. J. Hwang, A. Boukai, P. Yang, Nano Lett. 2009, 9, 410.
- 26J. Shi, Y. Hara, C. Sun, M. A. Anderson, X. Wang, Nano Lett. 2011, 11, 3413.
- 27Y. Q. Kou, J. K. Yang, L. X. Zhu, C. G. Yu, Chem. J. Chinese Univ. 2015, 36, 2485.
- 28Y. Zhang, J. Li, J. Wang, Chem. Mater. 2006, 18, 2917.
- 29P. C. Angelome, L. Andrini, M. E. Calvo, F. G. Requejo, S. A. Bilmes, G. J. A. A. Solar-Illia, J. Phys. Chem. C 2007, 111, 10886.
- 30Y. Nakato, T. Ueda, Y. Egi, H. Tsubomura, J. Electrochem. Soc. 1987, 134, 353.
- 31K. Peng, Y. Yan, S. Gao, J. Zhu, Adv. Funct. Mater. 2003, 13, 127.
- 32S. I. Cserveny, Int. J. Electron. 1968, 25, 65.
- 33C. C. Fluton, G. Lucovsky, R. J. Nemanich, Appl. Phys. Lett. 2004, 84, 580.
- 34K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, C. A. Grimes, Nanotechnology 2007, 18, 065707.
- 35S. Hinckley, J. F. McCann, D. Haneman, Solar Cells 1986, 17, 317.
- 36J.G. Chen, C.Y. Chen, C.G. Wu, C.Y. Lin, Y.H. Lai, C.C. Wang, H.W. Chen, R. Vittal, K.C. Ho, J. Mater. Chem. 2010, 20, 7201–7207.
- 37P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, B. C. O'Regan, J. Phys. Chem. C 2009, 113, 1126.