Dinuclear Cu(II) complexes based on p-xylylene-bridged bis(1,4,7-triazacyclononane) ligands: Synthesis, characterization, DNA cleavage abilities and evaluation of superoxide dismutase- and catalase-like activities
Qi Tang
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
These authors contributed equally to this work.Search for more papers by this authorJi-Qing Wu
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
These authors contributed equally to this work.Search for more papers by this authorHong-Yan Li
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Search for more papers by this authorYan-Fang Feng
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Search for more papers by this authorCorresponding Author
Zhong Zhang
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Correspondence
Zhong Zhang and Yu-Ning Liang, School of Chemistry and Pharmacy of Guangxi Normal University, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guilin, People's Republic of China.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yu-Ning Liang
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Correspondence
Zhong Zhang and Yu-Ning Liang, School of Chemistry and Pharmacy of Guangxi Normal University, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guilin, People's Republic of China.
Email: [email protected]; [email protected]
Search for more papers by this authorQi Tang
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
These authors contributed equally to this work.Search for more papers by this authorJi-Qing Wu
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
These authors contributed equally to this work.Search for more papers by this authorHong-Yan Li
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Search for more papers by this authorYan-Fang Feng
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Search for more papers by this authorCorresponding Author
Zhong Zhang
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Correspondence
Zhong Zhang and Yu-Ning Liang, School of Chemistry and Pharmacy of Guangxi Normal University, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guilin, People's Republic of China.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yu-Ning Liang
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, People's Republic of China
Correspondence
Zhong Zhang and Yu-Ning Liang, School of Chemistry and Pharmacy of Guangxi Normal University, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guilin, People's Republic of China.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
Three new dinuclear Cu(II) complexes with the formulas [Cu2(pxdmbtacn)Cl4] (1), [Cu2(pxdmbtacn)Cl0.7(NO3)1.3(OH)2(H2O)1.3]⋅6H2O (2) and [Cu2(pxdiprbtacn)Cl4] (3) together with one previously reported complex, [Cu2(pxbtacn)Cl4] (4), were obtained from Cu(II) salts with three p-xylylene-bridged bis-tacn ligands bearing pendant alkyl substituents or without pendant group. Complex 2 was structurally characterized as a centrosymmetric dinuclear molecule with each metal center being coordinated to some labile ligands in addition to one tacn ring. Based on the results of mass spectrometry and UV–visible spectroscopy, complexes 1 and 3 are capable of existing in aqueous solution as dinuclear species but 4 can partially form a dimer of the original dinuclear motif. Complexes 1, 3 and 4 can all effectively cleave supercoiled DNA oxidatively in the presence of hydrogen peroxide. The superoxide dismutase (SOD) activities of 1 and 3 measured under physiological conditions are comparable to that of the native CuZnSOD enzyme but the enzymatic activity of 4 is about three- to fourfold lower. Furthermore, complexes 1, 3 and 4 demonstrate moderate scavenging effect on hydrogen peroxide and their catalase activities are in the decreasing order of 3 > 1 > 4.
Supporting Information
Filename | Description |
---|---|
aoc4297-sup-0001-supplementary materials-rev.docWord document, 5.8 MB |
Table S1 Hydrogen bond distances (Å) and angles (°) for complex 2. Figure S1. Comparison of the experimental PXRD pattern of the bulk product of complex 4 with that simulated from its reported single crystal structure data. Figure S2. FT-IR spectra of three bis-tacn ligands (a for pxdmbtacn, b for pxdiprbtacn and c for pxbtacn) and their corresponding complexes (d for 1, e for 2, f for 3 and g for 4). Figure S3. The d–d transition absorption of Cu(II) ion as a function of time plotted for complexes 1 (a), 3 (b), 4 (c) in the phosphate buffer at pH = 7.4 and this absorption as a function of pH recorded for complex 3 (d). Figure S4. Positive ion electrospray mass spectra of complexes 1 (a), 2 (b), 3 (c for spectrum obtained at the neutral conditions and d for spectrum obtained at pH 10) and 4 (e). Insets show the observed and calculated isotope distribution patterns of some major peaks. Figure S5. Cyclic voltammograms of complexes 1 (a) and 3 (b) in aqueous solution at a scan rate of 50 mV·s–1. [Complex] = 1.0 × 10–3 M, [TBAB] = 1.0 × 10–1 M. Figure S6. Time-course profiles of oxygen evolution (mL) from the reaction of H2O2 (417 mM) with complexes 1 (1.0 × 10−3 M), 3 (1.0 × 10−3 M) and 4 (1.0 × 10−3 M) in aqueous solution at room temperature. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1R. S. Balaban, S. Nemoto, T. Finkel, Cell 2005, 120, 483.
- 2B. Halliwell, Am. J. Med. 1991, 91, 14S.
- 3I. Fridovich, J. Biol. Chem. 1997, 272, 18515.
- 4E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Chem. Rev. 2006, 106, 1995.
- 5M. Hayyan, M. A. Hashim, I. M. Al-Nashef, Chem. Rev. 2016, 116, 3029.
- 6H. J. Forman, M. Maiorino, F. Ursini, Biochemistry 2010, 49, 835.
- 7H. Sies, J. Biol. Chem. 2014, 289, 8735.
- 8A.-F. Miller, FEBS Lett. 2012, 586, 585.
- 9J. J. P. Perry, D. S. Shin, E. D. Getzoff, J. A. Tainer, Biochim. Biophys. Acta 2010, 1804, 245.
- 10Y. Sheng, I. A. Abreu, D. E. Cabelli, M. J. Maroney, A.-F. Miller, M. Teixeira, J. S. Valentine, Chem. Rev. 2014, 114, 3854.
- 11P. Chelikania, I. Fitab, P. C. Loewena, Cell. Mol. Life Sci. 2004, 61, 192.
- 12A. J. Wu, J. E. Penner-Hahn, V. L. Pecoraro, Chem. Rev. 2004, 104, 903.
- 13D. Robbins, Y. Zhao, Antioxid. Redox Signaling 2014, 20, 1628.
- 14A. Bafana, S. Dutt, A. Kumar, S. Kumar, P. S. Ahuja, J. Mol. Catal. B 2011, 68, 129.
- 15R. A. Greenwald, Free Radical Biol. Med. 1990, 8, 201.
- 16C. Muscoli, S. Cuzzocrea, D. P. Riley, J. L. Zweier, C. Thiemermann, Z.-Q. Wang, D. Salvemini, Br. J. Pharmacol. 2003, 140, 445.
- 17H. Sheng, R. E. Chaparro, T. Sasaki, M. Izutsu, R. D. Pearlstein, A. Tovmasyan, D. S. Warner, Antioxid. Redox Signaling 2014, 20, 2437.
- 18D. P. Riley, Chem. Rev. 1999, 99, 2573.
- 19R. Krämer, Angew. Chem. Int. Ed. 2000, 39, 4469.
10.1002/1521-3773(20001215)39:24<4469::AID-ANIE4469>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 20I. Batinić-Haberle, J. S. Rebouças, I. Spasojević, Antioxid. Redox Signaling 2010, 13, 877.
- 21S. Signorella, C. Hureau, Coord. Chem. Rev. 2012, 256, 1229.
- 22B. J. Day, Biochem. Pharmacol. 2009, 77, 285.
- 23O. Iranzo, Bioorg. Chem. 2011, 39, 73.
- 24D. Salvemini, Z.-Q. Wang, J. L. Zweier, A. Samouilov, H. Macarthur, T. P. Misko, M. G. Currie, S. Cuzzocrea, J. A. Sikorski, D. P. Riley, Science 1999, 286, 304.
- 25I. Spasojević, I. Batinić-Haberle, Inorg. Chim. Acta 2001, 317, 230.
- 26Y. Watanabe, A. Namba, N. Umezawa, M. Kawahata, K. Yamaguchi, T. Higuchi, Chem. Commun. 2006, 4958.
- 27W.-T. Lee, S. B. Muñoz III, D. A. Dickie, J. M. Smith, Angew. Chem. Int. Ed. 2014, 53, 9856.
- 28K. D. Mjos, C. Orvig, Chem. Rev. 2014, 114, 4540.
- 29Z.-Q. Wang, F. Porreca, S. Cuzzocrea, K. Galen, R. Lightfood, E. Masini, C. Muscoli, V. Mollace, M. Ndengele, H. Ischiropoulos, D. J. Salvemini, Pharmacol. Exp. Ther. 2004, 309, 869.
- 30M. Di Napoli, F. Papa, IDrugs 2005, 8, 67.
- 31D. P. Riley, O. F. Schall, Adv. Inorg. Chem. 2007, 59, 233.
- 32T. Joshi, B. Graham, L. Spiccia, Acc. Chem. Res. 2015, 48, 2366.
- 33J. Qian, S. Yu, W. Wang, L. Wang, J. Tian, S. Yan, Dalton Trans. 2014, 43, 2646.
- 34J. Qian, X. Ma, J. Tian, W. Gu, J. Shang, X. Liu, S. Yan, J. Inorg. Biochem. 2010, 104, 993.
- 35Z. Zhang, Z.-R. Geng, X.-W. Kan, Q. Zhao, Y.-Z. Li, Z.-L. Wang, Inorg. Chim. Acta 2010, 363, 1805.
- 36X. Sheng, X. Guo, X.-M. Lu, G.-Y. Lu, Y. Shao, F. Liu, Q. Xu, Bioconjugate Chem. 2008, 19, 490.
- 37E. L. Hegg, J. N. Burstyn, J. Am. Chem. Soc. 1995, 117, 7015.
- 38S. Delagrange, R. Delgado, F. Nepveu, J. Inorg. Biochem. 2000, 81, 65.
- 39Q.-X. Li, Q.-H. Luo, Y.-Z. Li, M.-C. Shen, J. Chem. Soc. Dalton Trans. 2004, 2329.
- 40Q.-X. Li, Q.-H. Luo, Y.-Z. Li, Z.-Q. Pan, M.-C. Shen, Eur. J. Inorg. Chem. 2004, 4447.
- 41Q.-X. Li, Q. Li, R. Chen, X.-L. Yang, J.-Y. Zhou, H.-B. Xu, Inorg. Chem. Commun. 2010, 13, 1293.
- 42V. R. de Almeida, F. R. Xavier, R. E. H. M. B. Osório, L. M. Bessa, E. L. Schilling, T. G. Costa, T. Bortolotto, A. Cavalett, F. A. V. Castro, F. Vilhena, O. C. Alves, H. Terenzi, E. C. A. Eleutherio, M. D. Pereira, W. Haase, Z. Tomkowicz, B. Szpoganicz, A. J. Bortoluzzia, A. Neves, Dalton Trans. 2013, 42, 7059.
- 43Q.-X. Li, X. Chen, W.-L. Wang, X.-G. Meng, J. Coord. Chem. 2017, 70, 1554.
- 44G. B. Shul'pin, G. V. Nizova, Y. N. Kozlov, I. G. Pechenkina, New J. Chem. 2002, 26, 1238.
- 45T. H. Bennur, D. Srinivas, S. Sivasanker, V. G. Puranik, J. Mol. Catal. A 2004, 219, 209.
- 46F. Marken, J. E. Taylor, M. J. Bonne, M. E. Helton, M. L. Parry, V. McKee, Langmuir 2007, 23, 2239.
- 47Q.-X. Li, X.-F. Wang, L. Cai, Q. Li, X.-G. Meng, A.-G. Xuan, S.-Y. Huang, J. Ai, Inorg. Chem. Commun. 2009, 12, 145.
- 48M. Kose, P. Goring, P. Lucas, V. McKee, Inorg. Chim. Acta 2015, 435, 232.
- 49R. Kubota, S. Imamura, T. Shimizu, S. Asayama, H. Kawakami, ACS Med. Chem. Lett. 2014, 5, 639.
- 50M. E. Aliaga, D. Andrade-Acuna, C. Lopez-Alarcon, C. Sandoval-Acuna, H. Speisky, J. Inorg. Biochem. 2013, 129, 119.
- 51D. Moreno, V. Daier, C. Palopoli, J.-P. Tuchagues, S. Signorella, J. Inorg. Biochem. 2010, 104, 496.
- 52Z. Liu, G. B. Robinson, E. M. Gregory, Arch. Biochem. Biophys. 1994, 315, 74.
- 53A. X. S. Bruker, SAINT Software Reference Manual, Madison, WI 1998.
- 54G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany 1996.
- 55G. M. Sheldrick, SHELXTL NT Version 5.1: Program for Solution and Refinement of Crystal Structures, University of Göttingen, Germany 1997.
- 56B. Graham, G. D. Fallon, M. T. W. Hearn, D. C. R. Hockless, G. Lazarev, L. Spiccia, Inorg. Chem. 1997, 36, 6366.
- 57F. H. Fry, L. Spiccia, P. Jensen, B. Moubaraki, K. S. Murray, E. R. T. Tiekink, Inorg. Chem. 2003, 42, 5594.
- 58A. J. Black, I. A. Fallis, R. O. Gould, S. Parsons, S. A. Ross, M. Schröder, J. Chem. Soc. Dalton Trans. 1996, 4379.
- 59W. Han, L. Li, W. Gu, Z.-Q. Liu, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, P. Cheng, J. Coord. Chem. 2004, 57, 41.
- 60X. Zhang, W.-Y. Hsieh, T. N. Margulis, L. J. Zompa, Inorg. Chem. 1995, 34, 2883.
- 61R. Haidar, M. Ipek, B. DasGupta, M. Yousaf, L. J. Zompa, Inorg. Chem. 1997, 36, 3125.
- 62D. Kivelson, R. Neiman, J. Chem. Phys. 1961, 35, 149.
- 63Z. Xu, L. K. Thompson, D. O. Miller, Inorg. Chem. 1997, 36, 3985.
- 64K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 5th ed., Wiley-Interscience, New York 1997.
- 65B. Dede, Ì. Özmen, F. Karipcin, M. Cengiz, Appl. Organometal. Chem. 2009, 23, 512.
- 66R. N. Patel, Y. P. Singh, Y. Singh, R. J. Butcher, J. P. Jasinski, Polyhedron 2017, 129, 164.
- 67S. Poornima, K. Gunasekaran, M. Kandaswamy, Dalton Trans. 2015, 44, 16361.
- 68S. Durot, C. Policar, F. Cisnetti, F. Lambert, J.-P. Renault, G. Pelosi, G. Blain, H. Korri-Youssoufi, J.-P. Mahy, Eur. J. Inorg. Chem. 2005, 3513.
- 69L. Guijarro, M. Inclán, J. Pitarch-Jarque, A. Doménech-Carbó, J. U. Chicote, S. Trefler, E. García-España, A. García-España, B. Verdejo, Inorg. Chem. 2017, 56, 13748.
- 70D. Li, S. Li, D. Yang, J. Yu, J. Huang, Y. Li, W. Tang, Inorg. Chem. 2003, 42, 6071.
- 71R. Belda, S. Blasco, H. R. J. Begoña Verdejo, A. Doménech-Carbó, C. Soriano, J. Latorre, C. Terencio, E. García-España, Dalton Trans. 2013, 42, 11194.
- 72Q. Yuan, K. Cai, Z.-P. Qi, Z.-S. Bai, Z. Su, W.-Y. Sun, J. Inorg. Biochem. 2009, 103, 1156.
- 73S. Caglar, E. Adıgüel, B. Caglar, T. Saykal, E. Sahin, O. Büyügüngör, Inorg. Chim. Acta 2013, 397, 101.
- 74B. Dede, F. Karipcin, M. Cengiz, J. Hazard. Chem. 2009, 163, 1148.