Sub-Ångstrom Pore Engineering in Carbon Molecular Sieves Realizes Diffusion-Gated Kinetic Sieving of Alkenes from Alkanes
Dr. Fuqiang Chen
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorDr. Hua Shang
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, Shanxi, 030008 P.R. China
Search for more papers by this authorDr. Guangtong Hai
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorXinlei Huang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorZhe Chu
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorDr. Haoran Sun
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Hangzhou Hangyang Co., Ltd., Hangzhou, 310014 P.R. China
Search for more papers by this authorLiu Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorProf. Qiwei Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorProf. Zhiguo Zhang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorProf. Qilong Ren
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zongbi Bao
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
E-mail: [email protected]
Search for more papers by this authorDr. Fuqiang Chen
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorDr. Hua Shang
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, Shanxi, 030008 P.R. China
Search for more papers by this authorDr. Guangtong Hai
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorXinlei Huang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorZhe Chu
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorDr. Haoran Sun
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Hangzhou Hangyang Co., Ltd., Hangzhou, 310014 P.R. China
Search for more papers by this authorLiu Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Search for more papers by this authorProf. Qiwei Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorProf. Zhiguo Zhang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorProf. Qilong Ren
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zongbi Bao
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 P.R. China
Institute of Zhejiang University-Quzhou, 99 Zheda Road, Kecheng District, Quzhou, 324000 P.R. China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Sub-Ångstrom engineering of slit-pore carbon molecular sieves (CMSs) enables diffusion-gated kinetic sieving of alkenes over alkanes. The optimized CMSs exhibit high alkene/alkane selectivity, low co-adsorption, and near-complete alkene recovery in pressure swing adsorption (PSA) operations, establishing a practical route for energy-efficient alkene purifications.
Abstract
Sub-Ångstrom pore engineering offers a new paradigm for molecular separations. Here, we report sucrose-derived carbon molecular sieves (CMSs) with precisely tailored sub-Ångstrom slit pores that enable diffusion-gated kinetic sieving for the challenging separation of alkenes from alkanes. The optimized materials, C-Suc-650 and C-Suc-750, set new industry-leading standards for the kinetic separation of C3H6/C3H8 and C2H4/C2H6, respectively. Through a combination of breakthrough experiments, pressure swing adsorption (PSA) simulations, and molecular dynamics (MD) modeling, we demonstrate that these sieves consistently achieve >99.9% alkene purity, with outstanding selectivity, rapid uptake kinetics, and remarkably low energy consumption. Mechanistic studies reveal that slit pore architecture uniquely enhances alkene diffusion while hindering alkane movement, establishing a clear design principle for next-generation, energy-efficient gas separations. These results provide a blueprint for exploiting diffusion-gated kinetic sieving at the sub-Ångstrom scale to address longstanding challenges in industrial gas purification.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202513448-sup-0001-SuppMat.docx115.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437.
- 2Y. Su, K.-i. Otake, J.-J. Zheng, P. Wang, Q. Lin, S. Kitagawa, C. Gu, Nat. Commun. 2024, 15, 2898.
- 3S. Du, J. Huang, M. R. Ryder, L. L. Daemen, C. Yang, H. Zhang, P. Yin, Y. Lai, J. Xiao, S. Dai, B. Chen, Nat. Commun. 2023, 14, 1197.
- 4H. S. Lee, N. S. Kim, D. I. Kwon, S. K. Lee, M. Numan, T. Jung, K. Cho, M. Mazur, H. S. Cho, C. Jo, Adv. Mater. 2021, 33, e2105398.
- 5H. Wang, X. L. Dong, V. Colombo, Q. N. Wang, Y. Y. Liu, W. Liu, X. L. Wang, X. Y. Huang, D. M. Proserpio, A. Sironi, Y. Han, J. Li, Adv. Mater. 2018, 30, 1805088.
- 6H. Sun, F. Chen, R. Chen, J. Li, L. Guo, Y. Liu, F. Shen, Q. Yang, Z. Zhang, Q. Ren, Z. Bao, Small 2023, 19, 2208182.
- 7S. Al-Khattaf, M. R. Saeed, A. Aitani, M. T. Klein, Energy Fuels 2018, 32, 6189–6199.
- 8F. Chen, N. Prasetyo, S. Sakaki, K.-i. Otake, S. Kitagawa, Angew. Chem. Int. Ed. 2025, 64, e202423371.
- 9Q. Dong, Y. Huang, J. Wan, Z. Lu, Z. Wang, C. Gu, J. Duan, J. Bai, J. Am. Chem. Soc. 2023, 145, 8043–8051.
- 10Y. Ye, Y. Xie, Y. Shi, L. Gong, J. Phipps, A. M. Al-Enizi, A. Nafady, B. Chen, S. Ma, Angew. Chem. Int. Ed. 2023, 62, e202302564.
- 11X. W. Zhang, H. He, Y. W. Gan, Y. Wang, N. Y. Huang, P. Q. Liao, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed. 2024, 63, e202317648.
- 12S. U. Rege, R. T. Yang, Chem. Eng. Sci. 2002, 57, 1139–1149.
- 13H. Zeng, M. Xie, T. Wang, R. J. Wei, X. J. Xie, Y. F. Zhao, W. G. Lu, D. Li, Nature 2021, 595, 542–548.
- 14A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137–140.
- 15F. Q. Chen, D. Lai, L. D. Guo, J. Wang, P. X. Zhang, K. Y. Wu, Z. G. Zhang, Q. W. Yang, Y. W. Yang, B. L. Chen, Q. L. Ren, Z. B. Bao, J. Am. Chem. Soc. 2021, 143, 9040–9047.
- 16E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606–1610.
- 17F. Chen, J. Wang, L. Guo, X. Huang, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, Z. Bao, Sep. Purif. Technol. 2022, 29, 121031.
- 18Z. Chu, J. Li, F. Chen, Y. Cao, L. Chen, F. Zhou, H. Ma, Q. Yang, Z. Zhang, K. Qiao, R. Qilong, B. Zongbi, ACS Cent. Sci. 2024, 10, 1861–1870.
- 19X. Huang, F. Chen, H. Sun, W. Xia, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, Z. Bao, Sep. Purif. Technol. 2022, 292, 121059.
- 20L. Yu, X. Han, H. Wang, S. Ullah, Q. Xia, W. Li, J. Li, I. Da Silva, P. Manuel, S. Rudić, Y. Cheng, S. Yang, T. Thonhauser, J. Li, J. Am. Chem. Soc. 2021, 143, 19300–19305.
- 21S. Tu, L. Yu, Y. Wu, Y. Chen, H. Wu, L. Wang, B. Liu, X. Zhou, J. Xiao, Q. Xia, AIChE J. 2022, 68, e17551.
- 22S.-M. Wang, M. Shivanna, S.-T. Zheng, T. Pham, K. A. Forrest, Q.-Y. Yang, Q. Guan, B. Space, S. Kitagawa, M. J. Zaworotko, J. Am. Chem. Soc. 2024, 146, 4153–4161.
- 23E. Wu, X.-W. Gu, D. Liu, X. Zhang, H. Wu, W. Zhou, G. Qian, B. Li, Nat. Commun. 2023, 14, 6146.
- 24M. C. Campo, A. M. Ribeiro, A. Ferreira, J. C. Santos, C. Lutz, J. M. Loureiro, A. E. Rodrigues, Sep. Purif. Technol. 2013, 103, 60–70.
- 25V. F. D. Martins, A. M. Ribeiro, M. G. Plaza, J. C. Santos, J. M. Loureiro, A. F. P. Ferreira, A. E. Rodrigues, J Chromatogr. A 2015, 1423, 136–148.
- 26S. J. Du, J. W. Huang, A. W. Anjum, J. Xiao, Z. Li, J. Mater. Chem. A 2021, 9, 23873–23881.
- 27L.-P. Guo, R.-S. Liu, J. Qian, G.-P. Hao, J. Guo, H. Wu, F. Wang, A.-H. Lu, Nat. Chem. Eng. 2024, 1, 411–420.
10.1038/s44286-024-00075-9 Google Scholar
- 28J. Liu, E. M. Calverley, M. H. McAdon, J. M. Goss, Y. Liu, K. C. Andrews, T. D. Wolford, D. E. Beyer, C. S. Han, D. A. Anaya, Carbon 2017, 123, 273–282.
- 29F. Chen, X. Huang, K. Guo, L. Yang, H. Sun, W. Xia, Z. Zhang, Q. Yang, Y. Yang, D. Zhao, Q. Ren, Z. Bao, ACS Appl. Mater. Interfaces 2022, 14, 30443–30453.
- 30J. Cui, Z. Zhang, L. Yang, J. Hu, A. Jin, Z. Yang, Y. Zhao, B. Meng, Y. Zhou, J. Wang, X. Cui, H. Xing, Science 2024, 383, 179–183.
- 31K. Li, D. H. Olson, J. Seidel, T. J. Emge, H. Gong, H. Zeng, J. Li, J. Am. Chem. Soc. 2009, 131, 10368–10369.
- 32D. Lai, F. Chen, L. Guo, L. Chen, J. Chen, Q. Yang, Z. Zhang, Y. Yang, Q. Ren, Z. Bao, Engineering. 2023, 23, 64–72.
- 33J. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869–932.
- 34R. Lyndon, W. Q. You, Y. Ma, J. Bacsa, Y. T. Gong, E. E. Stangland, K. S. Walton, D. S. Sholl, R. P. Lively, Chem. Mater. 2020, 32, 3715–3722.
- 35J. Peng, H. Wang, D. H. Olson, Z. Li, J. Li, Chem. Commun. 2017, 53, 9332–9335.
- 36X. Huang, F. Chen, H. Sun, L. Yang, Q. Yang, Z. Zhang, Y. Yang, Q. Ren, Z. Bao, J. Am. Chem. Soc. 2024, 146, 617–626.
- 37C. Gu, N. Hosono, J. J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387–391.
- 38P. J. Bereciartua, Á. Cantín, A. Corma, J. L. Jordá, M. Palomino, F. Rey, S. Valencia, E. W. Corcoran Jr, P. Kortunov, P. I. Ravikovitch, Science 2017, 358, 1068–1071.
- 39Y. F. Yuan, Y. S. Wang, X. L. Zhang, W. C. Li, G. P. Hao, L. Han, A. H. Lu, Angew. Chem. Int. Ed. 2021, 60, 19063–19067.
- 40J. S. Adams, A. K. Itta, C. Zhang, G. B. Wenz, O. Sanyal, W. J. Koros, Carbon 2019, 141, 238–246.
- 41Y. Ma, M. L. Jue, F. Zhang, R. Mathias, H. Y. Jang, R. P. Lively, Angew. Chem. Int. Ed. 2019, 58, 13259–13265.
- 42F. Chen, X. Huang, L. Yang, Z. Zhang, Q. Yang, Y. Yang, D. Zhao, Q. Ren, Z. Bao, Sci. China Chem. 2023, 66, 601–610.
- 43F. Q. Chen, J. Q. Ding, K. Q. Guo, L. Yang, Z. G. Zhang, Q. W. Yang, Y. W. Yang, Z. B. Bao, Y. He, Q. L. Ren, Angew. Chem. Int. Ed. 2021, 60, 2431–2438.
- 44F. Chen, K. Guo, X. Huang, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, Z. Bao, Sci. China Mater. 2023, 66, 319–326.
- 45F. Chen, F. Zheng, X. Huang, Z. Chu, H. Sun, L. Yang, Q. Yang, Z. Zhang, Q. Ren, Z. Bao, Adv. Mater. 2025, 37, 2409474.
- 46K. S. Sing, Pure Appl. Chem. 1985, 57, 603–619.
- 47M. Thommes, C. Morlay, R. Ahmad, J. Joly, Adsorption 2011, 17, 653–661.
- 48C. Y. Lee, Y.-S. Bae, N. C. Jeong, O. K. Farha, A. A. Sarjeant, C. L. Stern, P. Nickias, R. Q. Snurr, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2011, 133, 5228–5231.
- 49S. J. Geier, J. A. Mason, E. D. Bloch, W. L. Queen, M. R. Hudson, C. M. Brown, J. R. Long, Chem. Sci. 2013, 4, 2054–2061.
- 50A.-R. Kim, T.-U. Yoon, E.-J. Kim, J. W. Yoon, S.-Y. Kim, J. W. Yoon, Y. K. Hwang, J.-S. Chang, Y.-S. Bae, Chem. Eng. J. 2018, 331, 777–784.
- 51J.-W. Yoon, I.-T. Jang, K.-Y. Lee, Y.-K. Hwang, J.-S. Chang, Bull. Korean Chem. Soc. 2010, 31, 220–223.
- 52D. M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New Jersey 1984.
- 53S. Du, B. Huang, L. Zhu, Y. Wu, J. Huang, Z. Li, H. Yu, J. Xiao, Carbon 2023, 215, 118451.
- 54Y. Wang, N. Y. Huang, X. W. Zhang, H. He, R. K. Huang, Z. M. Ye, Y. Li, D. D. Zhou, P. Q. Liao, X. M. Chen, J.-P. Zhang, Angew. Chem. Int. Ed. 2019, 58, 7692–7696.
- 55Y. Chen, H. Wu, L. Yu, S. Tu, Y. Wu, Z. Li, Q. Xia, Chem. Eng. J. 2022, 431, 133284.
- 56L. Li, R.-B. Lin, X. Wang, W. Zhou, L. Jia, J. Li, B. Chen, Chem. Eng. J. 2018, 354, 977–982.
- 57M. Khalighi, Y. Chen, S. Farooq, I. Karimi, J. Jiang, Ind. Eng. Chem. Res. 2013, 52, 3877–3892.
- 58Z. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q. Ren, X. Lu, S. Deng, Langmuir 2011, 27, 13554–13562.
- 59Q. Ding, Z. Zhang, C. Yu, P. Zhang, J. Wang, X. Cui, C.-H. He, S. Deng, H. Xing, Sci. Adv. 2020, 6, eaaz4322.
- 60R. Lyndon, W. You, Y. Ma, J. Bacsa, Y. Gong, E. E. Stangland, K. S. Walton, D. S. Sholl, R. P. Lively, Chem. Mater. 2020, 32, 3715–3722.
- 61N. Hedin, G. J. DeMartin, W. J. Roth, K. G. Strohmaier, S. C. Reyes, Microporous Mesoporous Mater. 2008, 109, 327–334.
- 62S. U. Rege, J. Padin, R. T. Yang, AIChE J. 1998, 44, 799–809.
- 63B. Liang, X. Zhang, Y. Xie, R. B. Lin, R. Krishna, H. Cui, Z. Q. Li, Y. S. Shi, H. Wu, W. Zhou, B. L. Chen, J. Am. Chem. Soc. 2020, 142, 17795–17801.
- 64J. Yan, L. Sheng, Y. Liu, F. Zheng, L. Chen, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, Z. Bao, Sep. Purif. Technol. 2023, 319, 124075.
Online Version of Record before inclusion in an issue
e202513448