Monodisperse Regulation of Self-Assembled Monolayer Via Dipole Molecules for Efficient Perovskite Solar Cells
Zhinan Zhang
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYinghao Xu
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorSifan Chen
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorWenbo Li
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorShaofu Wang
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorChuan Peng
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorShengjie Du
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorSixiong Li
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorXingzhong Zhao
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorTi Wang
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorCorresponding Author
Zhenhua Yu
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
E-mail: [email protected]
Search for more papers by this authorZhinan Zhang
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorYinghao Xu
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorSifan Chen
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorWenbo Li
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorShaofu Wang
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorChuan Peng
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorShengjie Du
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorSixiong Li
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorXingzhong Zhao
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorTi Wang
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
Search for more papers by this authorCorresponding Author
Zhenhua Yu
School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, Wuhan University, Wuhan, 430072 P.R. China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
The application of self-assembled monolayers (SAMs) significantly drives the enhancement in the efficiency of perovskite solar cell (PSC). However, the transition mechanism of SAM molecules from colloidal solutions to films remains unclear. Herein, we systematically investigate the SAM precursor solutions and the crystallization quality of the resulting SAM and perovskite films. Fibrous micelles of about 460 nm are found in the pristine SAMs solution, leading to nonuniform and low coverage distribution of films. Strong dipole molecules are employed to establish supramolecular interactions with SAMs, enabling the formation of highly monodisperse cubic micelles in solution (160 nm) and uniform SAM films. The contact at buried interface is determined by the balance between dipole moment and steric hindrance. Consequently, the regulated SAMs based inverted PSCs (0.09 cm2) and mini-module (aperture area of 14.40 cm2) achieves efficiency of 26.58% (certificated 25.81%) and 22.95%, respectively. The optimized devices retain more than 96.30% of the initial efficiency for 5,100 h under the ISOS-D-1 condition with a linear fitting extrapolation to T90 of 11,259 h and 98.30% efficiency for 2,660 h under the ISOS-L-2 condition. This work highlights the great potential of SAMs micelle regulation for achieving efficient and stable PSC.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202512660-sup-0001-SuppMat.docx13.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Zhu, C. Chen, J. Dai, Y. Zhang, R. Mao, S. Chen, J. Huang, J. Zhu, Adv. Mater. 2024, 36, 2307357.
- 2Z. Yu, J. Wang, B. Chen, M. A. Uddin, Z. Ni, G. Yang, J. Huang, Adv. Mater. 2022, 34, 2205769.
- 3Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen, Y. Lin, H. Wei, Z. J. Yu, Z. Holman, J. Huang, Nat. Energy 2020, 5, 657–665.
- 4Y. Yang, H. Chen, C. Liu, J. Xu, C. Huang, C. D. Malliakas, H. Wan, A. S. R. Bati, Z. Wang, R. P. Reynolds, I. W. Gilley, S. Kitade, T. E. Wiggins, S. Zeiske, S. Suragtkhuu, M. Batmunkh, L. X. Chen, B. Chen, M. G. Kanatzidis, E. H. Sargent, Science 2024, 386, 898–902.
- 5M. Tao, Y. Wang, K. Zhang, Z. Song, Y. Lan, H. Guo, L. Guo, X. Zhang, J. Wei, D. Cao, Y. Song, Joule 2024, 8, 3142–3152.
- 6C. Liu, Y. Yang, H. Chen, J. Xu, A. Liu, A. S. R. Bati, H. Zhu, L. Grater, S. S. Hadke, C. Huang, V. K. Sangwan, T. Cai, D. Shin, L. X. Chen, M. C. Hersam, C. A. Mirkin, B. Chen, M. G. Kanatzidis, E. H. Sargent, Science 2023, 382, 810–815.
- 7S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, F. Ren, Q. Zhou, H. Raza, Y. Gao, Y. Ji, S. Li, H. Li, L. Qiu, W. Huang, Y. Zhao, B. Xu, Z. Liu, H. J. Snaith, N.-G. Park, W. Chen, Nature 2024, 632, 536–542.
- 8C. Peng, H. Huang, W. Liu, Z. Zhang, Y. Xu, S. Chen, S. Li, S. Du, S. Wang, Z. He, B. Zou, Z. Yu, ACS Appl. Mater. Interfaces 2025, 17, 10745–10754.
- 9M. Li, M. Liu, F. Qi, F. R. Lin, A. K. Y. Jen, Chem. Rev. 2024, 124, 2138–2204.
- 10K. Hossain, A. Kulkarni, U. Bothra, B. Klingebiel, T. Kirchartz, M. Saliba, D. Kabra, ACS Energy Lett. 2023, 8, 3860–3867.
- 11A. Al-Ashouri, M. Marčinskas, E. Kasparavičius, T. Malinauskas, A. Palmstrom, V. Getautis, S. Albrecht, M. D. McGehee, A. Magomedov, ACS Energy Lett. 2023, 8, 898–900.
- 12Z. Zhang, T. Wu, Z. Qin, M. Chen, W. Xiang, Z. Chen, Y. Wang, Z. Guo, T. Matsushima, L. Han, Adv. Energy Mater. 2025, 15, 2500572.
- 13D. Li, Q. Lian, T. Du, R. Ma, H. Liu, Q. Liang, Y. Han, G. Mi, O. Peng, G. Zhang, W. Peng, B. Xu, X. Lu, K. Liu, J. Yin, Z. Ren, G. Li, C. Cheng, Nat. Commun. 2024, 15, 7605.
- 14S. M. Park, M. Wei, N. Lempesis, W. Yu, T. Hossain, L. Agosta, V. Carnevali, H. R. Atapattu, P. Serles, F. T. Eickemeyer, H. Shin, M. Vafaie, D. Choi, K. Darabi, E. D. Jung, Y. Yang, D. B. Kim, S. M. Zakeeruddin, B. Chen, A. Amassian, T. Filleter, M. G. Kanatzidis, K. R. Graham, L. Xiao, U. Rothlisberger, M. Grätzel, E. H. Sargent, Nature 2023, 624, 289–294.
- 15B. Yu, K. Wang, Y. Sun, H. Yu, Adv. Mater. 2025, 37, 2500708.
- 16K. Datta, J. Wang, D. Zhang, V. Zardetto, W. H. M. Remmerswaal, C. H. L. Weijtens, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2022, 34, 2110053.
- 17P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger, D. Yoo, F. Lang, M. Grischek, B. Li, J. Li, O. Shargaieva, E. Unger, A. Al-Ashouri, E. Köhnen, M. Stolterfoht, D. Neher, R. Schlatmann, B. Rech, B. Stannowski, S. Albrecht, C. Becker, Nat. Nanotechnol. 2022, 17, 1214–1221.
- 18Z. Ren, Z. Cui, X. Shi, L. Wang, Y. Dou, F. Wang, H. Lin, H. Yan, S. Chen, Joule 2023, 7, 2894–2904.
- 19S. Wang, D. Khan, W. Zhou, Y. Sui, T. Zhang, G. Yu, Y. Huang, X. Yang, X. Chen, H. Yan, J. Tang, F. Yang, P. Han, Z. Zheng, Y. Zhang, Z. Tang, Adv. Funct. Mater. 2024, 34, 2316202.
- 20Y. Yang, R. Chen, J. Wu, Z. Dai, C. Luo, Z. Fang, S. Wan, L. Chao, Z. Liu, H. Wang, Angew. Chem. Int. Ed. 2024, 63, e202409689.
- 21X. Zhao, R. Luo, C. Yu, X. Xu, W. Zhu, Y. Min, N. Cai, Adv. Funct. Mater. 2024, 34, 2307568.
- 22C. Li, X. Wang, E. Bi, F. Jiang, S. M. Park, Y. Li, L. Chen, Z. Wang, L. Zeng, H. Chen, Y. Liu, C. R. Grice, A. Abudulimu, J. Chung, Y. Xian, T. Zhu, H. Lai, B. Chen, R. J. Ellingson, F. Fu, D. S. Ginger, Z. Song, E. H. Sargent, Y. Yan, Science 2023, 379, 690–694.
- 23B. Liu, X. Ren, R. Li, Y. Chen, D. He, Y. Li, Q. Zhou, D. Ma, X. Han, X. Shai, K. Yang, S. Lu, Z. Zhang, J. Feng, C. Chen, J. Yi, J. Chen, Adv. Mater. 2024, 36, 2312679.
- 24R. Azmi, D. S. Utomo, B. Vishal, S. Zhumagali, P. Dally, A. M. Risqi, A. Prasetio, E. Ugur, F. Cao, I. F. Imran, A. A. Said, A. R. Pininti, A. S. Subbiah, E. Aydin, C. Xiao, S. I. Seok, S. De Wolf, Nature 2024, 628, 93–98.
- 25R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A. S. Subbiah, J. Liu, G. T. Harrison, M. I. Nugraha, M. K. Eswaran, M. Babics, Y. Chen, F. Xu, T. G. Allen, A. u. Rehman, C.-L. Wang, T. D. Anthopoulos, U. Schwingenschlögl, M. De Bastiani, E. Aydin, S. De Wolf, Science 2022, 376, 73–77.
- 26S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A. J. Torma, T. Terlier, K. Ho, W. Li, A. B. Puthirath, X. Shuai, A. Agrawal, B. Traore, M. Jones, R. Giridharagopal, P. M. Ajayan, J. Strzalka, D. S. Ginger, C. Katan, M. A. Alam, J. Even, M. G. Kanatzidis, A. D. Mohite, Science 2022, 377, 1425–1430.
- 27T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, B. Chen, S. Jiang, S. Xiong, H. Luo, S. Wan, L. Li, Q. Bao, Y. Tian, X. Gao, J. Xie, E. H. Sargent, H. Tan, Nat. Energy 2023, 8, 610–620.
- 28F. Yuan, T. Xue, M. Du, H. Huang, R. Zeng, L. Li, C. Wang, Z. Song, Q. Guo, X. Hu, E. Zhou, Adv. Funct. Mater. 2025, 2425145, https://doi.org/10.1002/adfm.202425145.
- 29W. Liu, R. Chen, Z. Tan, J. Wang, S. Liu, C. Shi, X. Liu, Y. Cai, F. Ren, Z. Zhou, Q. Zhou, W. Li, T. Miao, H. Zhu, T. Imran, Z. Liu, W. Chen, Adv. Energy Mater. 2025, 15, 2404374.
- 30Z. Ying, S. Su, X. Li, G. Chen, C. Lian, D. Lu, M. Zhang, X. Guo, H. Tian, Y. Sun, L. Liu, C. Xiao, Y. Zeng, C. Zhang, X. Yang, J. Ye, Nat. Energy 2025, 10, 737–749.
- 31H. Cui, L. Huang, S. Zhou, C. Wang, X. Hu, H. Guan, S. Wang, W. Shao, D. Pu, K. Dong, J. Zhou, P. Jia, W. Wang, C. Tao, W. Ke, G. Fang, Energy Environ. Sci. 2023, 16, 5992–6002.
- 32S. Chen, Z. Zhang, S. Du, C. Peng, S. Li, Y. Xu, S. Wang, Z. He, K. Wu, X.-z. Zhao, Z. Yu, Chem. Eng. J. 2025, 508, 161146.
- 33Y. Zhang, R. Yu, M. Li, Z. He, Y. Dong, Z. Xu, R. Wang, Z. Ma, Z. Tan, Adv. Mater. 2024, 36, 2310203.
- 34W. Chen, Y. Zhou, L. Wang, Y. Wu, B. Tu, B. Yu, F. Liu, H.-W. Tam, G. Wang, A. B. Djurišić, L. Huang, Z. He, Adv. Mater. 2018, 30, 1800515.
- 35Y. Peng, Y. Chen, J. Zhou, C. Luo, W. Tang, Y. Duan, Y. Wu, Q. Peng, Nat. Commun. 2025, 16, 1252.
- 36H. Liu, Y. Xin, Z. Suo, L. Yang, Y. Zou, X. Cao, Z. Hu, B. Kan, X. Wan, Y. Liu, Y. Chen, J. Am. Chem. Soc. 2024, 146, 14287–14296.
- 37C. Li, H. Sun, D. Dou, S. Gan, L. Li, Adv. Energy Mater. 2024, 14, 2401883.
- 38X. Chen, Q. Wang, H. Wei, J. Yang, Y. Yao, W. Tang, W. Qiu, X. Xu, L. Song, Y. Wu, Q. Peng, Energy Environ. Sci. 2024, 17, 7342–7354.