Spillover-Mediated H* Redistribution Promotes Electrocatalytic Acetonitrile Hydrogenation in PEM Reactors
Shan Huang
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Bingying Han
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
These authors contributed equally to this work.
Search for more papers by this authorYe Liu
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
These authors contributed equally to this work.
Search for more papers by this authorZijie Cheng
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorProf. Huibin Ge
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
Search for more papers by this authorProf. Lianbing Zhang
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Prof. Riguang Zhang
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorProf. Baojun Wang
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorCorresponding Author
Prof. Jie Kong
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Jiayuan Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorShan Huang
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Bingying Han
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
These authors contributed equally to this work.
Search for more papers by this authorYe Liu
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
These authors contributed equally to this work.
Search for more papers by this authorZijie Cheng
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorProf. Huibin Ge
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
Search for more papers by this authorProf. Lianbing Zhang
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Prof. Riguang Zhang
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorProf. Baojun Wang
State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
Search for more papers by this authorCorresponding Author
Prof. Jie Kong
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Jiayuan Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
Palladium with high H* coverage is partnered with copper with low H* coverage to enable palladium-to-copper hydrogen spillover, which reduces H* coverage on Pd to mitigate H2 evolution and increases H* availability on Cu to promote ethylamine productivity. Utilization of these catalysts into a proton exchange membrane electrolyzer enabled an expected improvement in ethylamine production rate, HER suppression, and energy efficiency.
Abstract
Electrocatalytic acetonitrile hydrogenation (EAH) provides a sustainable route for ethylamine synthesis, yet suffers from low productivity, competitive hydrogen evolution reaction (HER), and high energy consumption due to suboptimal catalyst and reactor design. To overcome these challenges, we describe a palladium-copper hybrid catalyst that employs spillover-mediated active hydrogen (H*) redistribution mechanism. Hydrogen spillover from palladium with high H* coverage to copper with low H* coverage creates H* redistribution: reduced H* coverage of Pd mitigates HER while maintaining efficient EAH, and increased H* availability of Cu promotes EAH without activating stagnant HER. Integration of these catalysts into both cathode and anode of a proton exchange membrane electrolyzer enabled efficient ethylamine electrosynthesis and formic acid electrooxidation over 100 h, achieving exceptional ethylamine productivity (6160.0 ± 119.1 mmol gcat−1 h−1) and Faradaic efficiency (94.2 ± 1.6%) at record-low energy consumption (3.55 kWh kgethylamine−1). This work marks a critical advancement toward sustainable ethylamine electrosynthesis.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202512654-sup-0001-SuppMat.docx9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Liu, F. Huang, M. Peng, Y. Chen, X. Cai, L. Wang, Z. Hu, X. Wen, N. Wang, D. Xiao, H. Jiang, H. Sun, H. Liu, D. Ma, Nat. Commun. 2021, 12, 6194.
- 2V. G. Chandrashekhar, W. Baumann, M. Beller, R. V. Jagadeesh, Science 2022, 376, 1433–1441.
- 3C. Tang, C. Wei, Y. Fang, B. Liu, X. Song, Z. Bian, X. Yin, H. Wang, Z. Liu, G. Wang, X. Xiao, X. Duan, Nat. Commun. 2024, 15, 3233.
- 4C. Wei, Y. Fang, B. Liu, C. Tang, B. Dong, X. Yin, Z. Bian, Z. Wang, J. Liu, Y. Qian, G. Wang, Nat. Commun. 2023, 14, 3847.
- 5R. Xia, D. Tian, S. Kattel, B. Hasa, H. Shin, X. Ma, J. G. Chen, F. Jiao, Nat. Commun. 2021, 12, 1949.
- 6A. Aguirre, S. E. Collins, Catal. Today 2019, 336, 22–32.
- 7P. Braos-García, C. García-Sancho, A. Infantes-Molina, E. Rodríguez-Castellón, A. Jiménez-López, Appl. Catal. A 2010, 381, 132–144.
- 8H. Zhang, L. Yu, Y. Yao, B. Zhou, J. Cheng, X. Liu, Z. Chen, L. Zhao, L. Zhang, ACS Catal. 2025, 15, 4468–4476.
- 9S. Bai, F. Liu, B. Huang, F. Li, H. Lin, T. Wu, M. Sun, J. Wu, Q. Shao, Y. Xu, X. Huang, Nat. Commun. 2020, 11, 954.
- 10D. Zhang, J. Chen, Z. Hao, L. Jiao, Q. Ge, W.-F. Fu, X.-J. Lv, Chem Catal. 2021, 1, 393–406.
- 11W. Ao, H. Ren, C. Cheng, Z. Fan, Q. Qin, P. Yin, Q. Zhang, L. Dai, Angew. Chem. Int. Ed. 2023, 62, e202307924.
- 12Y. Zhang, N. Kornienko, Chem. Catal. 2022, 2, 499–507.
- 13P. Liu, B. Chen, C. Liang, W. Yao, Y. Cui, S. Hu, P. Zou, H. Zhang, H. J. Fan, C. Yang, Adv. Mater. 2021, 33, 2007377.
- 14Y. Shi, M. Li, Y. Yu, B. Zhang, Energy Environ. Sci. 2020, 13, 4564–4582.
- 15Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang, S. Luo, C. Tian, M. Liu, X. Lu, Adv. Mater. 2019, 31, 1900178.
- 16J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye, S. Xu, H. Wang, H. Li, Nat. Energy 2021, 6, 475–486.
- 17L. She, G. Zhao, T. Ma, J. Chen, W. Sun, H. Pan, Adv. Funct. Mater. 2022, 32, 2108465.
- 18Y. Liu, K. Ji, X. Wang, Q. Shi, A.-Z. Li, Z. Yin, Y.-Q. Zhu, H. Duan, Angew. Chem. Int. Ed. 2025, 64, e202419178.
- 19Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 20H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Rüscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B. R. Cuenya, J. Luo, Angew. Chem. Int. Ed. 2022, 61, e202202556.
- 21R. Prins, Chem. Rev. 2012, 112, 2714–2738.
- 22Q. Tan, L. Li, Y. Li, Z. Jiang, Y. Ma, Y. Qu, J. Li, Angew. Chem. Int. Ed. 2024, 63, e202400483.
- 23Y. Liu, X. Liu, X. Wang, H. Ning, T. Yang, J. Yu, A. Kumar, Y. Luo, H. Wang, L. Wang, ACS Nano 2021, 15, 15017–15026.
- 24S. Büchele, Z. Chen, E. Fako, F. Krumeich, R. Hauert, O. V. Safonova, N. López, S. Mitchell, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2020, 59, 19639–19644.
- 25Y. Tang, J. Li, Y. Lin, M. Cheng, S. Wang, Z. Tian, J. Zhou, H. Zhang, Y. Wang, L. Chen, Nat. Commun. 2025, 16, 2236.
- 26J. Sun, N. V. S. N. M. Konda, R. Parthasarathi, T. Dutta, M. Valiev, F. Xu, B. A. Simmons, S. Singh, Green Chem. 2017, 19, 3152–3163.
- 27D. Gao, Q. Zhu, P. Liu, Q. Zhou, X. Cheng, L. Liu, J. Xu, X. Lu, J. Inorg. Organomet. Polym. Mater. 2023, 33, 2000–2012.
- 28J. Fan, S. Yu, K. Qi, C. Liu, L. Zhang, H. Zhang, X. Cui, W. Zheng, J. Mater. Chem. A 2018, 6, 8531–8536.
- 29Y. Zhang, S. Han, S. Zhu, R. Chen, T. Li, Z. Lyu, M. Zhao, M. Gu, M. Shao, Y. Xia, Angew. Chem. Int. Ed. 2023, 62, e202314634.
- 30M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S. Varma, Chem. Rev. 2016, 116, 3722–3811.
- 31J. Li, J. Hu, M. Zhang, W. Gou, S. Zhang, Z. Chen, Y. Qu, Y. Ma, Nat. Commun. 2021, 12, 3502.
- 32A. Damian, S. Omanovic, J. Power Sources 2006, 158, 464–476.
- 33J. Park, S. Lee, H.-E. Kim, A. Cho, S. Kim, Y. Ye, J. W. Han, H. Lee, J. H. Jang, J. Lee, Angew. Chem. Int. Ed. 2019, 58, 16038–16042.
- 34D. Zhan, J. Velmurugan, M. V. Mirkin, J. Am. Chem. Soc. 2009, 131, 14756–14760.
- 35S. Mukherjee, B. Ramalingam, S. Gangopadhyay, J. Mater. Chem. A 2014, 2, 3954.
- 36L. Zhang, Y. Guo, A. Iqbal, B. Li, D. Gong, W. Liu, K. Iqbal, W. Liu, W. Qin, Int. J. Hydrogen Energy 2018, 43, 1251–1260.
- 37C. Jo, I. Hwang, J. Lee, C. W. Lee, S. Yoon, J. Phys. Chem. C 2011, 115, 11880–11886.
- 38H. Jeffrey, D. Marco, X. Bingjun, J. Phys. Chem. C 2016, 120, 17334–17341.
- 39J. N. Kondo, S. Ge, T. Suzuki, R. Osuga, T. Matsumoto, T. Yokoi, Y. Shimizu, A. Fukazawa, N. Shida, M. Atobe, J. Phys. Chem. C 2022, 126, 19376–19385.
- 40B. Liu, D. He, Z. Ke, H. Wang, C. Tang, Q. Zhang, H. Xu, M. Yang, Y. Yang, Q. Liu, X. Xiao, Sci. China Chem. 2023, 66, 3242–3251.
- 41Q. Wu, H. Li, G. Yang, Y. Cao, H. Wang, F. Peng, H. Yu, J. Catal. 2023, 425, 40–49.
- 42S. Hunsche, A. Gröne, G. Greten, S. Kapphan, R. Pankrath, J. Seglins, Phys. Status Solidi A 1995, 148, 629–634.
- 43Y. Li, Y. Liu, M. Zhang, L. Li, Z. Jiang, B. Han, B. Wang, J. Li, Angew. Chem. Int. Ed. 2025, 64, e202417631.
- 44B. Widom, Adv. Chem. Phys. 1963, 5, 353.
- 45Y. Li, L. Li, S. Xu, K. Cui, T. Wang, Z. Jiang, J. Li, Angew. Chem. Int. Ed. 2024, 63, e202407810.
- 46Y. Li, Y. Tan, M. Zhang, J. Hu, Z. Chen, L. Su, J. Li, Angew. Chem. Int. Ed. 2024, 63, e202411068.