Asymmetric, Corner-Sharing CuO5 and CuO6 Motifs in Cu-Based Metallic Perovskite Oxides Boosting Asymmetric C─C Coupling for CO2 Electroreduction to C2+
Yu Zhang
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorHongyan Zhao
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorJunjie Zhu
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZitao Chen
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorXiangjian Liu
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
Search for more papers by this authorZhenbao Zhang
School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005 P.R. China
Search for more papers by this authorLei Shi
Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P.R. China
Search for more papers by this authorXuezeng Tian
School of Physics, Sun Yat-sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorHeqing Jiang
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
Search for more papers by this authorYongfa Zhu
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Jiawei Zhu
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
E-mail: [email protected]
Search for more papers by this authorYu Zhang
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorHongyan Zhao
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorJunjie Zhu
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZitao Chen
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorXiangjian Liu
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
Search for more papers by this authorZhenbao Zhang
School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005 P.R. China
Search for more papers by this authorLei Shi
Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P.R. China
Search for more papers by this authorXuezeng Tian
School of Physics, Sun Yat-sen University, Guangzhou, 510275 P.R. China
Search for more papers by this authorHeqing Jiang
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
Search for more papers by this authorYongfa Zhu
Department of Chemistry, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Jiawei Zhu
State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P.R. China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
A unique type of Cu-based metallic perovskite oxides with asymmetric, corner-sharing CuO5 and CuO6 motifs were reported to promote asymmetric C─C coupling for efficient CO2-to-C2+ conversion. As a proof-of-concept catalyst, La0.8Ba0.2CuO3-δ was the most effective Cu-based-perovskite catalyst for C2+ production and performed comparably with or better than most reported Cu-based catalysts.
Abstract
Cu-based perovskite oxides feature significant potential for CO2 electroreduction (CO2RR) but encounter insufficient C2+ selectivity primarily due to the inherent symmetric charge distribution at Cu sites hindering asymmetric C─C coupling. Here we report a unique type of Cu-based metallic perovskite oxides with asymmetric, corner-sharing CuO5 and CuO6 motifs to boost asymmetric C─C coupling for efficient CO2-to-C2+ conversion. For the proof-of-concept catalyst of La0.8Ba0.2CuO3-δ, their ordered, corner-sharing CuO5 pyramids and CuO6 octahedra feature localized charge density redistribution, creating abundant asymmetric Cu─Cu dual sites with distinct electronic structures and also strengthening Cu─O covalency. In CO2RR (in both alkaline and acidic media), La0.8Ba0.2CuO3-δ greatly promotes C2+ formation while producing negligible CH4, showing a Faradaic efficiency ratio (C2+ to CH4) of up to 180. Moreover, La0.8Ba0.2CuO3-δ, achieving a remarkable C2+ Faradaic efficiency of 85.0% at 400 mA cm−2, together with well-boosted stability, outperforms previously reported Cu-based-perovskite catalysts. Our experiments and theoretical calculations attribute the superb performance mainly to the following factors: the asymmetric CuO5─CuO6 sites promoting differentiated *CO adsorption/hydrogenation to favor asymmetric *CO─*CHO coupling; the strengthened Cu─O covalency stabilizing the Cu sites. Extending this strategy to two additional pairs of Cu-based perovskite oxides generates similarly successful results.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202511546-sup-0001-SuppMat.docx5.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, F. M. Li, Y. Zhou, C. He, C. Xia, H. Niu, S. Wang, Y. Liu, Y. Mao, C. Zhang, B. You, Y. Pang, L. Duan, X. Yang, F. Song, T. Zhai, G. Wang, X. Guo, B. Tan, T. Yao, Z. Wang, B. Y. Xia, Nature 2024, 626, 86–91.
- 2J. E. Huang, F. Li, A. Ozden, A. S. Rasouli, F. P. G. de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R. K. Miao, C.-T. Dinh, D. Sinton, E. H. Sargent, Science 2021, 372, 1074–1078.
- 3M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.-T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C.-S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S.-C. Lo, A. Ip, Z. Ulissi, E. H. Sargent, Nature 2020, 581, 178–183.
- 4C. Zhan, F. Dattila, C. Rettenmaier, A. Herzog, M. Herran, T. Wagner, F. Scholten, A. Bergmann, N. López, B. R. Cuenya, Nat. Energy 2024, 9, 1485–1496.
- 5H. Wu, L. Huang, J. Timoshenko, K. Qi, W. Wang, J. Liu, Y. Zhang, S. Yang, E. Petit, V. Flaud, J. Li, C. Salameh, P. Miele, L. Lajaunie, B. Roldán Cuenya, D. Rao, D. Voiry, Nat. Energy 2024, 9, 422–433.
- 6L. Fan, F. Li, T. Liu, J. E. Huang, R. K. Miao, Y. Yan, S. Feng, C.-W. Tai, S.-F. Hung, H.-J. Tsai, M.-C. Chen, Y. Bai, D. Kim, S. Park, P. Papangelakis, C. Wu, A. Shayesteh Zeraati, R. Dorakhan, L. Sun, D. Sinton, E. Sargent, Nat. Synth. 2025, 4, 262–270.
- 7Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh, C. Chen, M. V. Fonseca Guzman, J. Feijóo, P.-C. Chen, H. Wang, C. J. Pollock, X. Huang, Y.-T. Shao, C. Wang, D. A. Muller, H. D. Abruña, P. Yang, Nature 2023, 614, 262–269.
- 8R. Amirbeigiarab, J. Tian, A. Herzog, C. Qiu, A. Bergmann, B. Roldan Cuenya, O. M. Magnussen, Nat. Catal. 2023, 6, 837–846.
- 9W. Ma, X. He, W. Wang, S. Xie, Q. Zhang, Y. Wang, Chem. Soc. Rev. 2021, 50, 12897–12914.
- 10H. Wu, H. Yu, Y.-L. Chow, P. A. Webley, J. Zhang, Adv. Mater. 2024, 36, 2403217.
- 11M. Ma, B. Seger, Angew. Chem. Int. Ed. 2024, 63, e202401185.
- 12M. Jiang, H. Wang, M. Zhu, X. Luo, Y. He, M. Wang, C. Wu, L. Zhang, X. Li, X. Liao, Z. Jiang, Z. Jin, Chem. Soc. Rev. 2024, 53, 5149–5189.
- 13T. Yan, X. Chen, L. Kumari, J. Lin, M. Li, Q. Fan, H. Chi, T. J. Meyer, S. Zhang, X. Ma, Chem. Rev. 2023, 123, 10530–10583.
- 14J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751–756.
- 15Y. Zhu, Z. Tang, L. Yuan, B. Li, Z. Shao, W. Guo, Chem. Soc. Rev. 2025, 54, 1027–1092.
- 16H. Zhang, Y. Xu, M. Lu, X. Xie, L. Huang, Adv. Funct. Mater. 2021, 31, 2101872.
- 17W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Energy Environ. Sci. 2019, 12, 442–462.
- 18X. Tu, X. Liu, Y. Zhang, J. Zhu, H. Jiang, Green Carbon 2024, 4, 100246.
- 19M. Schwartz, R. L. Cook, V. M. Kehoe, R. C. MacDuff, J. Patel, A. F. Sammells, J. Electrochem. Soc. 1993, 140, 614–618.
- 20J. Wang, C. Cheng, B. Huang, J. Cao, L. Li, Q. Shao, L. Zhang, X. Huang, Nano Lett. 2021, 21, 980–987.
- 21S. Chen, Y. Su, P. Deng, R. Qi, J. Zhu, J. Chen, Z. Wang, L. Zhou, X. Guo, B. Y. Xia, ACS Catal. 2020, 10, 4640–4646.
- 22J. Zhu, Y. Wang, A. Zhi, Z. Chen, L. Shi, Z. Zhang, Y. Zhang, Y. Zhu, X. Qiu, X. Tian, X. Bai, Y. Zhang, Y. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202111670.
- 23Y. Li, Y. Zhang, L. Shi, X. Liu, Z. Zhang, M. Xie, Y. Dong, H. Jiang, Y. Zhu, J. Zhu, Small 2024, 20, 2402823.
- 24J. Zhu, Y. Zhang, Z. Chen, Z. Zhang, X. Tian, M. Huang, X. Bai, X. Wang, Y. Zhu, H. Jiang, Nat. Commun. 2024, 15, 1565.
- 25K. Yao, J. Li, H. Wang, R. Lu, X. Yang, M. Luo, N. Wang, Z. Wang, C. Liu, T. Jing, S. Chen, E. Cortés, S. A. Maier, S. Zhang, T. Li, Y. Yu, Y. Liu, X. Kang, H. Liang, J. Am. Chem. Soc. 2022, 144, 14005–14011.
- 26A. J. Garza, A. T. Bell, M. Head-Gordon, ACS Catal. 2018, 8, 1490–1499.
- 27J. Li, Y. Chen, B. Yao, W. Yang, X. Cui, H. Liu, S. Dai, S. Xi, Z. Sun, W. Chen, Y. Qin, J. Wang, Q. He, C. Ling, D. Wang, Z. Zhang, J. Am. Chem. Soc. 2024, 146, 5693–5701.
- 28X. Wang, J. F. de Araújo, W. Ju, A. Bagger, H. Schmies, S. Kühl, J. Rossmeisl, P. Strasser, Nat. Nanotechnol. 2019, 14, 1063–1070.
- 29X. Qiu, H. Zhu, J. Huang, P. Liao, X. Chen, J. Am. Chem. Soc. 2021, 143, 7242–7246.
- 30X. Y. Zhang, Z. X. Lou, J. Chen, Y. Liu, X. Wu, J. Y. Zhao, H. Y. Yuan, M. Zhu, S. Dai, H. F. Wang, C. Sun, P. F. Liu, H. G. Yang, Nat. Commun. 2023, 14, 7681.
- 31C. Michel, L. E. Rakho, M. Hervieu, J. Pannetier, B. Raveau, J. Solid State Chem. 1987, 68, 143–152. Deposition Number(s) Deposition Number (s) 1706821 (for La0.8Ba0.2CuO3-δ) contains the supplementary crystallographic data for this paper.
- 32L. Er-Rakho, C. Michel, B. Raveau, J. Solid State Chem. 1988, 73, 514–519.
- 33M. V. Abrashev, V. N. Popov, J. Phys. Condens. Matter 1995, 7, 4967–4973.
- 34T. Ma, Z. Jiao, H. Qiu, F. Wang, Y. Liu, L. Guo, eScience 2024, 4, 100246.
- 35B. Hammer, J. K. Nørskov, Surf. Sci. 1995, 343, 211–220.
- 36J. Greeley, J. K. Nørskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 2002, 53, 319–348.
- 37Y. Li, F. Liu, Z. Chen, L. Shi, Z. Zhang, Y. Gong, Y. Zhang, X. Tian, X. Qiu, X. Ding, X. Bai, H. Jiang, Y. Zhu, J. Zhu, Adv. Mater. 2022, 34, 2206002.
- 38J. M. Chen, Y. Y. Chin, M. Valldor, Z. Hu, J. M. Lee, S. C. Haw, N. Hiraoka, H. Ishii, C. W. Pao, K. D. Tsuei, J. F. Lee, H. J. Lin, L. Y. Jang, A. Tanaka, C. T. Chen, L. H. Tjeng, J. Am. Chem. Soc. 2014, 136, 1514–1519.
- 39J. Dai, Y. Zhu, H. A. Tahini, Q. Lin, Y. Chen, D. Guan, C. Zhou, Z. Hu, H. J. Lin, T. S. Chan, C. T. Chen, S. C. Smith, H. Wang, W. Zhou, Z. Shao, Nat. Commun. 2020, 11, 5657.
- 40M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao, J. Duan, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2022, 144, 14936–14944.
- 41L. Xie, Y. Cai, Y. Jiang, M. Shen, J. C.-H. Lam, J.-j. Zhu, W. Zhu, Nat. Commun. 2024, 15, 10386.
- 42S. Li, G. Wu, J. Mao, A. Chen, X. Liu, J. Zeng, Y. Wei, J. Wang, H. Zhu, J. Xia, Angew. Chem. Int. Ed. 2024, 63, e202407612.
- 43T. Zhang, S. Xu, D. L. Chen, T. Luo, J. Zhou, L. Kong, J. Feng, J. Q. Lu, X. Weng, A. J. Wang, Angew. Chem. Int. Ed. 2024, 63, e202407748.
- 44C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, Science 2018, 360, 783–787.
- 45Q. Lei, L. Huang, J. Yin, B. Davaasuren, Y. Yuan, X. Dong, Z.-P. Wu, X. Wang, K. X. Yao, X. Lu, Y. Han, Nat. Commun. 2022, 13, 4857.
- 46J. Wang, Y. Zhang, H. Bai, H. Deng, B. Pan, Y. Li, Y. Wang, Angew. Chem. Int. Ed. 2024, 63, e202404110.
- 47S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, ACS Energy Lett. 2018, 3, 193–198.
- 48J. Mao, Y. Wang, B. Zhang, Y. Lou, C. Pan, Y. Zhu, Y. Zhang, Green Carbon 2024, 2, 45–56.
10.1016/j.greenca.2024.02.001 Google Scholar
- 49Y. Tokura, H. Takagi, S. Uchida, Nature 1989, 337, 345–347.
- 50C. Torardi, E. McCarron, M. Subramanian, A. Sleight, D. Cox, Mater. Res. Bull. 1987, 22, 1563–1571.