“Outside-in” Design of Single-Atom Catalysts: Linking Specific Peripheral Geometry to Defined CO2 Reduction Performance
Jia Zhao
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
Both the authors contributed equally to this work.
Search for more papers by this authorYang Chen
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Both the authors contributed equally to this work.
Search for more papers by this authorDi Liu
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, China
Search for more papers by this authorWeng Fai Ip
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, China
Search for more papers by this authorCorresponding Author
Jian Lin
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaodong Wang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Sen Lin
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXianzhi Fu
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorTao Zhang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJia Zhao
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
Both the authors contributed equally to this work.
Search for more papers by this authorYang Chen
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Both the authors contributed equally to this work.
Search for more papers by this authorDi Liu
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, China
Search for more papers by this authorWeng Fai Ip
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, China
Search for more papers by this authorCorresponding Author
Jian Lin
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiaodong Wang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Sen Lin
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXianzhi Fu
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorTao Zhang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorGraphical Abstract
This work proposes an “outside-in” strategy for the design of NC-supported Fe and Ni SACs for CO2RR. Combined DFT calculations and experimental studies show that incorporating specific six- or five-membered rings into the outer shell retrofit the electronic property of coordination N atoms in the inner shell, thereby precisely controlling the catalytic performance of the metal center.
Abstract
The regulation of single-atom catalyst (SAC) through microenvironment engineering, particularly via peripheral species, has recently garnered significant attention in the fields of materials science and heterogeneous catalysis. Nevertheless, establishing unambiguous structure-property relationships for SAC, especially concerning peripheral effects, remains a significant challenge. Herein, we propose a strategy for the design of N-doped carbon-supported Fe SACs for CO2 reduction reaction (CO2RR). Density functional theory(DFT) calculations reveal that installing five- or six-membered ring in the outer shell modulates the electronic properties of the inner-shell coordination N species, altering their electron transfer capabilities while fine-tuning the d-p coupling between the Fe center and adjacent N atoms. Notably, five-membered rings induce stronger d-p coupling compared to their six-membered counterparts, leading to a higher Fe valence state. This electronic modulation optimizes the adsorption strength of key CO2RR intermediates (COOH* and CO*), enhancing catalytic performance for CO production. Extensive experimental studies corroborate these theoretical findings. The proposed “outside-in” design strategy can be extended to Ni SACs, offering new insights into the exploration of highly efficient single-atom centers through peripheral geometric effects.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202511184-supp-0001-SuppMat.docx12.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernández, Y. Wang, A. K. Datye, Science 2016, 353, 150–154.
- 2A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65–81.
- 3X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 4X. Liang, N. Fu, S. Yao, Z. Li, Y. Li, J. Am. Chem. Soc. 2022, 144, 18155–18174.
- 5E. C. H. Sykes, P. Christopher, Curr. Opin. Chem. Eng. 2020, 29, 67–73.
- 6S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang, Y. Li, Chem. Rev. 2020, 120, 11900–11955.
- 7Y. Pan, Y. Chen, K. Wu, Z. Chen, S. Liu, X. Cao, W.-C. Cheong, T. Meng, J. Luo, L. Zheng, C. Liu, D. Wang, Q. Peng, J. Li, C. Chen, Nat. Commun. 2019, 10, 4290.
- 8K. Li, S. Zhang, X. Zhang, S. Liu, H. Jiang, T. Jiang, C. Shen, Y. Yu, W. Chen, Nano Lett. 2022, 22, 1557–1565.
- 9Y. Zhang, J. Yang, R. Ge, J. Zhang, J. M. Cairney, Y. Li, M. Zhu, S. Li, W. Li, Coord. Chem. Rev. 2022, 461, 214493.
- 10F. Yu, J. Zhan, D. Chen, J. Guo, S. Zhang, L. H. Zhang, Adv. Funct. Mater. 2023, 33, 2214425.
- 11J. Zhao, C. Fu, K. Ye, Z. Liang, F. Jiang, S. Shen, X. Zhao, L. Ma, Z. Shadike, X. Wang, J. Zhang, K. Jiang, Nat. Commun. 2022, 13, 685.
- 12Y. Dai, H. Li, C. Wang, W. Xue, M. Zhang, D. Zhao, J. Xue, J. Li, L. Luo, C. Liu, X. Li, P. Cui, Q. Jiang, T. Zheng, S. Gu, Y. Zhang, J. Xiao, C. Xia, J. Zeng, Nat. Commun. 2023, 14, 3382.
- 13Y. Chai, F. Wei, L. Cao, X. Wang, S. Lin, J. Lin, T. Zhang, Coord. Chem. Rev. 2025, 536, 216649.
- 14Y. Zhou, F. Wei, H. Qi, Y. Chai, L. Cao, J. Lin, Q. Wan, X. Liu, Y. Xing, S. Lin, A. Wang, X. Wang, T. Zhang, Nat. Catal. 2022, 5, 1145–1156.
- 15S. Chen, Y. Chai, Y. Chen, F. Wei, X. Pan, J. Lin, S. Lin, Chem. Eng. Sci. 2024, 291, 119919.
- 16T. Chen, G. Zhang, H. Sun, Y. Hua, S. Yang, D. Zhou, H. Di, Y. Xiong, S. Hou, H. Xu, L. Zhang, Nat. Commun. 2025, 16, 2402.
- 17J. Zhang, Y. Zhao, C. Chen, Y.-C. Huang, C.-L. Dong, C.-J. Chen, R.-S. Liu, C. Wang, K. Yan, Y. Li, G. Wang, J. Am. Chem. Soc. 2019, 141, 20118–20126.
- 18J. Qin, H. Liu, P. Zou, R. Zhang, C. Wang, H. L. Xin, J. Am. Chem. Soc. 2022, 144, 2197–2207.
- 19H. Shang, Z. Jiang, D. Zhou, J. Pei, Y. Wang, J. Dong, X. Zheng, J. Zhang, W. Chen, Chem. Sci. 2020, 11, 5994–5999.
- 20B. Zhou, F. Guo, X. Liu, H. Zhang, J. Cheng, H. Zhang, Z. Chen, L. Tan, K. Zeng, F. Jia, L. Zhang, Z. Ai, Appl. Catal. B: Environ. 2025, 371, 125230.
- 21B. Ni, P. Shen, G. Zhang, J. Zhao, H. Ding, Y. Ye, Z. Yue, H. Yang, H. Wei, K. Jiang, J. Am. Chem. Soc. 2024, 146, 11181–11192.
- 22Y. Zhang, J. Zhao, S. Lin, Chin. J. Struct. Chem. 2024, 43, 100415.
- 23Z. Chen, H. Niu, J. Ding, H. Liu, P. H. Chen, Y. H. Lu, Y. R. Lu, W. Zuo, L. Han, Y. Guo, S. F. Hung, Y. Zhai, Angew. Chem. Int. Ed. 2021, 60, 25404–25410.
- 24J. Liu, Z. Wei, Z. Gong, M. Yan, Y. Hu, S. Zhao, G. Ye, H. Fei, Appl. Catal. B: Environ. 2023, 324, 122267.
- 25F. Wei, L. Cao, B. Ge, Y. Chen, X. Pan, Y. Chai, R. Jing, X. Hu, X. Wang, J. Lin, S. Lin, Angew. Chem. Int. Ed. 2025, 64, e202416912.
- 26G. Chen, R. Lu, C. Li, J. Yu, X. Li, L. Ni, Q. Zhang, G. Zhu, S. Liu, J. Zhang, U. I. Kramm, Y. Zhao, G. Wu, J. Xie, X. Feng, Adv. Mater. 2023, 35, 2300907.
- 27Q. Wang, L. Lyu, X. Hu, W. Fan, C. Shang, Q. Huang, Z. Li, Z. Zhou, Y. M. Kang, Angew. Chem. Int. Ed. 2025, 64, e202422920.
- 28B. Tang, Q. Ji, X. Zhang, R. Shi, J. Ma, Z. Zhuang, M. Sun, H. Wang, R. Liu, H. Liu, C. Wang, Z. Guo, L. Lu, P. Jiang, D. Wang, W. Yan, Angew. Chem. Int. Ed. 2025, 64, e202424135.
- 29X. Bai, P. Hu, A. Li, Y. Zhang, A. Li, G. Zhang, Y. Xue, T. Jiang, Z. Wang, H. Cui, J. Kang, H. Zhao, L. Gu, W. Zhou, L.-M. Liu, X. Qiu, L. Guo, Nature 2024, 634, 80–84.
- 30Z. Levell, S. Yu, R. Wang, Y. Liu, J. Am. Chem. Soc. 2025, 147, 603–609.
- 31T. K. Todorova, M. W. Schreiber, M. Fontecave, ACS Catal. 2020, 10, 1754–1768.
- 32J. Yang, W. Liu, M. Xu, X. Liu, H. Qi, L. Zhang, X. Yang, S. Niu, D. Zhou, Y. Liu, Y. Su, J. F. Li, Z. Q. Tian, W. Zhou, A. Wang, T. Zhang, J. Am. Chem. Soc. 2021, 143, 14530–14539.
- 33X. Bai, X. Zhao, Y. Zhang, C. Ling, Y. Zhou, J. Wang, Y. Liu, J. Am. Chem. Soc. 2022, 144, 17140–17148.
- 34Y. Qin, W. Zhao, C. Xia, L.-J. Yu, F. Song, J. Zhang, T. Wu, R. Cao, S. Ding, Y. Su, B. Y. Xia, Angew. Chem. Int. Ed. 2024, 63, e202404763.
- 35T. Liu, Y. Wang, Y. Li, Adv. Funct. Mater. 2022, 32.
- 36X. Hu, S. Chen, L. Chen, Y. Tian, S. Yao, Z. Lu, X. Zhang, Z. Zhou, J. Am. Chem. Soc. 2022, 144, 18144–18152.
- 37C. Wang, X. Wang, H. Ren, Y. Zhang, X. Zhou, J. Wang, Q. Guan, Y. Liu, W. Li, Nat. Commun. 2023, 14, 5108.
- 38A. de la Torre, B. Zager, F. Bahrami, M. H. Upton, J. Kim, G. Fabbris, G. H. Lee, W. Yang, D. Haskel, F. Tafti, K. W. Plumb, Nat. Commun. 2023, 14, 5018.
- 39N. M. Adli, W. Shan, S. Hwang, W. Samarakoon, S. Karakalos, Y. Li, D. A. Cullen, D. Su, Z. Feng, G. Wang, G. Wu, Angew. Chem. Int. Ed. 2021, 60, 1022–1032.
- 40L. Jiao, J. Zhu, Y. Zhang, W. Yang, S. Zhou, A. Li, C. Xie, X. Zheng, W. Zhou, S.-H. Yu, H.-L. Jiang, J. Am. Chem. Soc. 2021, 143, 19417–19424.
- 41J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, Z. Chen, J. Am. Chem. Soc. 2022, 144, 9661–9671.
- 42Z. Ma, B. Wang, X. Yang, C. Ma, W. Wang, C. Chen, F. Liang, N. Zhang, H. Zhang, Y. Chu, Z. Zhuang, H. Xu, Y. Wang, J. Liu, J. Am. Chem. Soc. 2024, 146, 29140–29149.
- 43W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, C. Zhao, Angew. Chem. Int. Ed. 2019, 58, 6972–6976.
- 44L. Jiao, W. Yang, G. Wan, R. Zhang, X. Zheng, H. Zhou, S.-H. Yu, H.-L. Jiang, Angew. Chem. Int. Ed. 2020, 59, 20589–20595.
- 45X. Wang, Y. Pan, H. Ning, H. Wang, D. Guo, W. Wang, Z. Yang, Q. Zhao, B. Zhang, L. Zheng, J. Zhang, M. Wu, Appl. Catal. B: Environ. 2020, 266, 118630.
- 46Z. Jin, D. Jiao, Y. Dong, L. Liu, J. Fan, M. Gong, X. Ma, Y. Wang, W. Zhang, L. Zhang, Z. Gen Yu, D. Voiry, W. Zheng, X. Cui, Angew. Chem. Int. Ed. 2024, 63, e202318246.
- 47C.-T. Toh, H. Zhang, J. Lin, A. S. Mayorov, Y.-P. Wang, C. M. Orofeo, D. B. Ferry, H. Andersen, N. Kakenov, Z. Guo, I. H. Abidi, H. Sims, K. Suenaga, S. T. Pantelides, B. Özyilmaz, Nature 2020, 577, 199–203.
- 48H. Tian, Y. Ma, Z. Li, M. Cheng, S. Ning, E. Han, M. Xu, P.-F. Zhang, K. Zhao, R. Li, Y. Zou, P. Liao, S. Yu, X. Li, J. Wang, S. Liu, Y. Li, X. Huang, Z. Yao, D. Ding, J. Guo, Y. Huang, J. Lu, Y. Han, Z. Wang, Z. G. Cheng, J. Liu, Z. Xu, K. Liu, P. Gao, et al., Nature 2023, 615, 56–61.
- 49K. Kim, G. Kim, T. Jeong, W. Lee, Y. Yang, B.-H. Kim, B. Kim, B. Lee, J. Kang, M. Kim, J. Am. Chem. Soc. 2024, 146, 34033–34042.
- 50M. Liu, M. Liu, W. Chen, F. Li, S. Cai, S.-J. Lin, X. Chen, Z. Cai, Angew. Chem. Int. Ed. 2025, 64, e202421755.