Electro-responsive Tri-state Switch in Supramolecular Circuits
Min Tan
College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018 China
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
Search for more papers by this authorXueyan Zhao
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing, 163318 China
Search for more papers by this authorZhibin Zhao
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
Institute of Physics, Henan Engineering Research Center of Photoelectric Measurement, Henan Academy of Sciences, Zhengzhou, 450046 China
Search for more papers by this authorAdila Adijiang
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
Search for more papers by this authorHaibo Shu
College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Lichuan Chen
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Zhiqiang Fan
School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114 China
E-mail: [email protected]; [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dong Xiang
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected], [email protected]
Search for more papers by this authorMin Tan
College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018 China
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
Search for more papers by this authorXueyan Zhao
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing, 163318 China
Search for more papers by this authorZhibin Zhao
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
Institute of Physics, Henan Engineering Research Center of Photoelectric Measurement, Henan Academy of Sciences, Zhengzhou, 450046 China
Search for more papers by this authorAdila Adijiang
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
Search for more papers by this authorHaibo Shu
College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Lichuan Chen
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Zhiqiang Fan
School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114 China
E-mail: [email protected]; [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dong Xiang
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350 China
E-mail: [email protected]; [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
TOC: First demonstration of an electroresponsive multistable switch in a supramolecular circuit showing three distinct conductance states under bias voltages without chemical additives, enabling richer logic encoding, achieving an exceptional switching ratio of approximately 1.25×103 (one of the highest reported to date), and revealing the mechanism for the formation of molecular trimer junctions promoted by the applied electrical field.
Abstract
Efficiently manipulating charge transport at the molecular level is critical to developing multifunctional and responsive molecular electronic devices. Here, we report the first electroresponsive tristate switch in a supramolecular circuit, overcoming the binary limitation and enabling richer logic encoding, governed solely by a bias voltage (electric field). At low electric fields, p-phenylenediamine (PPD) molecules exhibit a high-conductance state, which transitions successively to two distinct low-conductance states as the external electric field strength increases. This precise control of supramolecular junctions through electric field manipulation achieved an on/off ratio GH/GL of ∼1.25×103, which is one of the largest values reported to date. Flicker noise analysis and density functional theory calculations reveal the intrinsic mechanism for the observation, i.e., electric field promoting the formation of trimer supramolecular junctions leads to the striking on/off ratio. These findings provide new insights into the design of molecular circuits with tunable conductance, paving a way for the design of molecular computation, memory devices, and sensors.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202511115-sup-0001-SuppMat.pdf10 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Nat. Rev. Mater. 2016, 1, 1–15.
- 2L. Zhang, Y. Qiu, W.-G. Liu, H. Chen, D. Shen, B. Song, K. Cai, H. Wu, Y. Jiao, Y. Feng, J. S. W. Seale, C. Pezzato, J. Tian, Y. Tan, X.-Y. Chen, Q.-H. Guo, C. L. Stern, D. Philp, R. D. Astumian, W. A. G. III, J. F. Stoddart, Nature 2023, 613, 280–286.
- 3Y. L. Zou, W. Sun, J. Xun, Q. M. Liang, L. Chen, T. R. Diao, J. Shi, D. Y. Wu, C. Dou, W. Hong, Z.-Q. Tian, Y. Yang, Angew. Chem. Int. Ed. 2025, 137, e202415940.
- 4H. Wang, F. Hu, A. Adijiang, R. Emusani, J. Zhang, Q. Hu, X. Guo, T. Lee, L. Chen, D. Xiang, J. Am. Chem. Soc. 2024, 146, 35347–35355.
- 5L. Ge, S. Hou, Y. Chen, Q. Wu, L. Long, X. Yang, Y. Ji, L. Lin, G. Xue, J. Liu, X. Liu, C. J. Lambert, W. Hong, Y. Zheng, Chem. Sci. 2022, 13, 9552–9559.
- 6L. Tong, Z. Yu, Y.-J. Gao, X.-C. Li, J.-F. Zheng, Y. Shao, Y.-H. Wang, X.-S. Zhou, Nat. Commun. 2023, 14, 3397.
- 7J. Dalmieda, W. Shi, L. Li, L. Venkataraman, Nano Lett. 2024, 24, 703–707.
- 8H. B. Li, Y.-F. Xi, Z.-W. Hong, J. Yu, X.-X. Li, W.-X. Liu, L. Domulevicz, S. Jin, X.-S. Zhou, J. Hihath, ACS Sens. 2021, 6, 565–572.
- 9W. Lee, S. Louie, A. M. Evans, N. M. Orchanian, I. B. Stone, B. Zhang, Y. Wei, X. Roy, C. Nuckolls, L. Venkataraman, Nano Lett. 2022, 22, 4919–4924.
- 10Y. J. Zeng, D. Wu, X. H. Cao, W. X. Zhou, L. M. Tang, K. Q. Chen, Adv. Funct. Mater. 2020, 30, 1903873.
- 11C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, G. Zhang, D.-H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, X. Guo, Science 2016, 352, 1443–1445.
- 12H. Reddy, K. Wang, Z. Kudyshev, L. Zhu, S. Yan, A. Vezzoli, S. J. Higgins, V. Gavini, A. Boltasseva, P. Reddy, V. M. Shalaev, E. Meyhofer, Science 2020, 369, 423–426.
- 13Q. Zou, X. Chen, Y. Zhou, X. Jin, Z. Zhang, J. Qiu, R. Wang, W. Hong, J. Su, D.-H. Qu, H. Tian, J. Am. Chem. Soc. 2022, 144, 10042–10052.
- 14M. Tan, F. Sun, X. Zhao, Z. Zhao, S. Zhang, X. Xu, A. Adijiang, W. Zhang, H. Wang, C. Wang, Z. Li, E. Scheer, D. Xiang, J. Am. Chem. Soc. 2024, 146, 6856–6865.
- 15W. Lee, L. Li, M. Camarasa-Gómez, D. Hernangómez-Pérez, X. Roy, F. Evers, M. S. Inkpen, L. Venkataraman, Nat. Commun. 2024, 15, 1439.
- 16X. Wang, H. Chen, Y. Lei, Y. Li, B. Xiao, Adv. Mater. 2024, 36, 2413529.
- 17H. Chen, F. Jiang, C. Hu, Y. Jiao, S. Chen, Y. Qiu, P. Zhou, L. Zhang, K. Cai, B. Song, X.-Y. Chen, X. Zhao, M. R. Wasielewski, H. Guo, W. Hong, J. F. Stoddart, J. Am. Chem. Soc. 2021, 143, 8476–8487.
- 18L. Li, J. Z. Low, J. Wilhelm, G. Liao, S. Gunasekaran, C. R. Prindle, R. L. Starr, D. Golze, C. Nuckolls, M. L. Steigerwald, F. Evers, L. M. Campos, X. Yin, L. Venkataraman, Nat. Chem. 2022, 14, 1061–1067.
- 19Q. Zhang, Y. Wang, C. Nickle, Z. Zhang, A. Leoncini, D.-C. Qi, K. Sotthewes, A. Borrini, H. J. W. Zandvliet, E. D. Barco, D. Thompson, C. A. Nijhuis, Nat. Commun. 2024, 15, 8300.
- 20Q. Zhou, K. Song, G. Zhang, X. Song, J. Lin, Y. Zang, D. Zhang, D. Zhu, Nat. Commun. 2022, 13, 1803.
- 21A. M. Ortuño, P. Reiné, L. Álvarez de Cienfuegos, I. R. Márquez, W. Dednam, E. B. Lombardi, J. J. Palacios, E. Leary, G. Longhi, V. Mujica, A. Millán, M. T. González, L. A. Zotti, D. Miguel, J. M. Cuerva, Angew. Chem. Int. Ed. 2023, 62, e202218640.
- 22W. Zhang, Z. Zhao, M. Tan, A. Adijiang, S. Zhong, X. Xu, T. Zhao, E. Ramya, L. Sun, X. Zhao, Z. Fan, D. Xiang, Chem. Sci. 2023, 14, 11456–11465.
- 23M. Nau, W. Bro-Jørgensen, M. Linseis, M. Bodensteiner, R. F. Winter, G. C. Solomon, Angew. Chem. Int. Ed. 2025, 64, e202417796.
- 24Z. Yang, P.-A. Cazade, J.-L. Lin, Z. Cao, N. Chen, D. Zhang, L. Duan, C. A. Nijhuis, D. Thompson, Y. Li, Nat. Commun. 2023, 14, 5639.
- 25Y. Han, C. Nickle, Z. Zhang, H. P. Astier, T. J. Duffin, D. Qi, Z. Wang, E. Del Barco, D. Thompson, C. A. Nijhuis, Nat. Mater. 2020, 19, 843–848.
- 26K. Zhang, C. Wang, M. Zhang, Z. Bai, F.-F. Xie, Y.-Z. Tan, Y. Guo, K.-J. Hu, L. Cao, S. Zhang, X. Tu, D. Pan, L. Kang, J. Chen, P. Wu, X. Wang, J. Wang, J. Liu, Y. Song, G. Wang, F. Song, W. Ji, S.-Y. Xie, S.-F. Shi, M. A. Reed, B. Wang, Nat. Nanotechnol. 2020, 15, 1019–1024.
- 27J. Li, S. Hou, Y.-R. Yao, C. Zhang, Q. Wu, H.-C. Wang, H. Zhang, X. Liu, C. Tang, M. Wei, W. Xu, Y. Wang, J. Zheng, Z. Pan, L. Kang, J. Liu, J. Shi, Y. Yang, C. J. Lambert, S.-Y. Xie, W. Hong, Nat. Mater. 2022, 21, 917–923.
- 28J. Li, P. Shen, Z. Zhuang, J. Wu, B. Z. Tang, Z. Zhao, Nat. Commun. 2023, 14, 6250.
- 29Y.-L. Zou, Q.-M. Liang, T. Lu, Y.-G. Li, S. Zhao, J. Gao, Z.-X. Yang, A. Feng, J. Shi, W. Hong, Z.-Q. Tian, Y. Yang, Sci. Adv. 2023, 9, eadf0425.
- 30C. Tang, T. Stuyver, T. Lu, J. Liu, Y. Ye, T. Gao, L. Lin, J. Zheng, W. Liu, J. Shi, S. Shaik, H. Xia, W. Hong, Nat. Commun. 2023, 14, 3657.
- 31Y. Tang, Y. Zhou, D. Zhou, Y. Chen, Z. Xiao, J. Shi, J. Liu, W. Hong, J. Am. Chem. Soc. 2020, 142, 19101–19109.
- 32X. Li, W. Ge, S. Guo, J. Bai, W. Hong, Angew. Chem. Int. Ed. 2023, 62, e202216819.
- 33T. Gao, A. Daaoub, Z. Pan, Y. Hu, S. Yuan, Y. Li, G. Dong, R. Huang, J. Liu, S. Sangtarash, J. Shi, Y. Yang, H. Sadeghi, W. Hong, J. Am. Chem. Soc. 2023, 145, 17232–17241.
- 34Y. Jiao, Y. Qiu, L. Zhang, W.-G. Liu, H. Mao, H. Chen, Y. Feng, K. Cai, D. Shen, B. Song, X.-Y. Chen, X. Li, X. Zhao, R. M. Young, C. L. Stern, M. R. Wasielewski, R. D. Astumian, W. A. G. III, J. F. Stoddart, Nature 2022, 603, 265–270.
- 35S. Chang, J. He, A. Kibel, M. Lee, O. Sankey, P. Zhang, S. Lindsay, Nat. Nanotechnol. 2009, 4, 297–301.
- 36L. Wang, Z. L. Gong, S. Y. Li, W. Hong, Y. W. Zhong, D. Wang, L. J. Wan, Angew. Chem. Int. Ed. 2016, 55, 12393–12397.
- 37S. Chen, D. Su, C. Jia, Y. Li, X. Li, X. Guo, D. A. Leigh, L. Zhang, Chem 2022, 8, 243–252.
- 38G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270–274.
- 39X. Xu, Q. Qi, Q. Hu, L. Ma, R. Emusani, S. Zhang, X. Zhao, M. Tan, A. Adijiang, W. Zhang, Z. Ma, G. Tian, E. Scheer, D. Xiang, Phys. Rev. Lett. 2024, 133, 233001.
- 40R. Frisenda, V. A. Janssen, F. C. Grozema, H. S. Van Der Zant, N. Renaud, Nat. Chem. 2016, 8, 1099–1104.
- 41A. Feng, Y. Zhou, M. A. Al-Shebami, L. Chen, Z. Pan, W. Xu, S. Zhao, B. Zeng, Z. Xiao, Y. Yang, W. Hong, Nat. Chem. 2022, 14, 1158–1164.
- 42D. Su, S. Zhou, H. Masai, Z. Liu, C. Zhou, C. Yang, Z. Li, S. Tsuda, Z. Liu, J. Terao, X. Guo, Adv. Sci. 2022, 9, 2200022.
- 43J.-H. Tang, Y. Li, Q. Wu, Z. Wang, S. Hou, K. Tang, Y. Sun, H. Wang, H. Wang, C. Lu, X. Wang, X. Li, D. Wang, J. Yao, C. J. Lambert, N. Tao, Y.-W. Zhong, P. J. Stang, Nat. Commun. 2019, 10, 4599.
- 44B. Xiao, S. He, M. Sun, J. Zhou, Z. Wang, Y. Li, S. Liu, W. M. Nau, S. Chang, Angew. Chem. Int. Ed. 2022, 61, e202203830.
- 45X. Zhu, H. Chen, J. Wang, A. Migliore, X. Li, Y. Li, B. Wang, C. Yang, Y. Jiao, J. Cao, C. Yang, C. Gao, S. He, K. N. Houk, J. Yang, J. F. Stoddart, C. Jia, X. Guo, J. Am. Chem. Soc. 2025, 147, 6203–6213.
- 46X. Zhao, Y. Yan, M. Tan, S. Zhang, X. Xu, Z. Zhao, M. Wang, X. Zhang, A. Adijiang, Z. Li, E. Scheer, D. Xiang, SmartMat. 2024, 5, e1280.
- 47X. Zhu, B. Wang, W. Xiong, S. Zhou, K. Qu, J. T. Lü, H. Chen, C. Jia, X. Guo, Angew. Chem. Int. Ed. 2022, 61, e202210939.
- 48P. Zhou, K. Cheng, K. Qu, L. Wang, C. Hu, W. Liu, H. Chen, J. Am. Chem. Soc. 2025, 147, 19272–19281.
- 49W. Xu, H. Zhang, Y. Zhou, T. Lu, Y. Li, Y. Zhu, C. Wei, J. Zheng, R. Li, J. Li, L. Chen, G. Zhang, J. Shi, J. Liu, D. Zhang, W. Hong, J. Am. Chem. Soc. 2025, 147, 5879–5886.
- 50H. Chen, J. F. Stoddart, Nat. Rev. Mater. 2021, 6, 804–828.
- 51X. Li, Q. Wu, J. Bai, S. Hou, W. Jiang, C. Tang, H. Song, X. Huang, J. Zheng, Y. Yang, J. Liu, Y. Hu, J. Shi, Z. Liu, C. J. Lambert, D. Zhang, W. Hong, Angew. Chem. Int. Ed. 2020, 59, 3280–3286.
- 52C. Zhang, J. Cheng, Q. Wu, S. Hou, S. Feng, B. Jiang, C. J. Lambert, X. Gao, Y. Li, J. Li, J. Am. Chem. Soc. 2023, 145, 1617–1630.
- 53P. Zhou, Y. Fu, M. Wang, R. Qiu, Y. Wang, J. F. Stoddart, Y. Wang, H. Chen, J. Am. Chem. Soc. 2023, 145, 18800–18811.
- 54A. C. Aragones, N. L. Haworth, N. Darwish, S. Ciampi, E. J. Mannix, G. G. Wallace, I. Diez-Perez, M. L. Coote, Nature 2016, 531, 88–91.
- 55J. Lin, Y. Lv, K. Song, X. Song, H. Zang, P. Du, Y. Zang, D. Zhu, Nat. Commun. 2023, 14, 293.
- 56X. Wang, B. Zhang, B. Fowler, L. Venkataraman, T. Rovis, J. Am. Chem. Soc. 2023, 145, 11903–11906.
- 57A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017, 543, 637–646.
- 58B.-F. Zeng, R. Deng, Y.-L. Zou, C.-A. Huo, J.-Y. Wang, W.-M. Yang, Q.-M. Liang, S.-J. Qiu, A. Feng, J. Shi, CCS Chem 2023, 5, 830–840.
Online Version of Record before inclusion in an issue
e202511115