Self-Adapting Lattice Respiration Enabled by Crystal Design and d-p Orbital Hybridization Toward Highly Stable Rechargeable Aluminum Batteries
Huaizhi Wang
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yu Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBo Long
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorShuqiang Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorXueying Lu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorShijie Zhou
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorProf. Feng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Ying Bai
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Chuan Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorHuaizhi Wang
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Yu Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorBo Long
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorShuqiang Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorXueying Lu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorShijie Zhou
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Search for more papers by this authorProf. Feng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Ying Bai
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Prof. Chuan Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 P.R. China
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019 P.R. China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorGraphical Abstract
Based on the dual considerations of crystal structure and electronic structure, we construct cathodes with “self-adapting lattice respiration (SALR)” effect. The effect effectively addresses the poor cycle stability of transition metal-based RABs cathodes caused by the strong electrostatic interaction between high charge density Al3+ and host lattice.
Abstract
Rechargeable aluminum batteries (RABs) are promising for large-scale energy storage due to the appealing three-electron transfer feature, low cost, and high safety. However, the strong electrostatic interaction between Al3+ and host lattice induces severe lattice distortion and structural collapse, leading to poor cycle stability in RABs. Herein, we develop a new-type FeWO4 cathode with a comprehensive consideration of the crystal structure and electronic structure. The 3D open framework and strong W─O covalent network of the FeWO4 greatly improve the storage of high charge density Al3+. Moreover, the d-p orbital hybridization between the transition metal and oxygen facilitates electron delocalization, which effectively weakens the interaction with the trivalent cation (Al3+). Importantly, combining in situ characterizations and theoretical calculations, it is demonstrated that as-prepared cathode exhibits a “self-adapting lattice respiration” (SALR) effect. Specifically, the reversible W–O bond elongation/compression (Δd ≈ 0.05 Å) during cycling reduces lattice strain and confines volume expansion to less than 3%. As results, the FeWO4 cathode delivers a high capacity of 192 mAh g−1 at 500 mA g−1 and long cycle life of over 2300 cycles with quiet low capacity decay of 0.01% per cycle in RABs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202510773-supp-0001-SuppMat.docx22.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, Nature 2015, 520, 324–328.
- 2Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan, Y. Huang, D. Sun, Y. Tang, X. Ji, K. Amine, M. Shao, Nat. Commun. 2023, 14, 6024.
- 3Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.-S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Nat. Commun. 2013, 4, 1870.
- 4F. Wu, Energy Mater. Adv. 2025, 6, 0186.
- 5H. Wang, Y. Gao, Y. Li, H. Yang, W. Liu, B. Long, F. Wu, Y. Bai, C. Wu, Energy Mater. Adv. 2024, 5, 0117.
- 6J. Guo, J. L. Schaefer, Y. Shao, Energy Mater. Adv. 2024, 5, 0112.
- 7D.-Y. Wang, C.-Y. Wei, M.-C. Lin, C.-J. Pan, H.-L. Chou, H.-A. Chen, M. Gong, Y. Wu, C. Yuan, M. Angell, Y.-J. Hsieh, Y.-H. Chen, C.-Y. Wen, C.-W. Chen, B.-J. Hwang, C.-C. Chen, H. Dai, Nat. Commun. 2017, 8, 14283.
- 8H. Chen, H. Xu, S. Wang, T. Huang, J. Xi, S. Cai, F. Guo, Z. Xu, W. Gao, C. Gao, Sci. Adv. 2017, 3, eaao7233.
- 9K. Liang, L. Ju, S. Koul, A. Kushima, Y. Yang, Adv. Energy Mater. 2019, 9, 1802543.
- 10H. Hong, J. Liu, H. Huang, C. Atangana Etogo, X. Yang, B. Guan, L. Zhang, J. Am. Chem. Soc. 2019, 141, 14764–14771.
- 11S. Gu, H. Wang, C. Wu, Y. Bai, H. Li, F. Wu, Energy Storage Mater. 2017, 6, 9–17.
- 12Y. Liu, Y. Lu, A. Hossain Khan, G. Wang, Y. Wang, A. Morag, Z. Wang, G. Chen, S. Huang, N. Chandrasekhar, D. Sabaghi, D. Li, P. Zhang, D. Ma, E. Brunner, M. Yu, X. Feng, Angew. Chem. Int. Ed 2023, 62, e202306091.
- 13D.-J. Yoo, M. Heeney, F. Glöcklhofer, J. W. Choi, Nat. Commun. 2021, 12, 2386.
- 14S. Guo, H. Yang, M. Liu, X. Feng, H. Xu, Y. Bai, C. Wu, ACS Appl. Energy Mater. 2021, 4, 7064–7072.
- 15T. Cai, L. Zhao, H. Hu, T. Li, X. Li, S. Guo, Y. Li, Q. Xue, W. Xing, Z. Yan, L. Wang, Energy Environ. Sci. 2018, 11, 2341–2347.
- 16H. Li, H. Yang, Z. Sun, Y. Shi, H.-M. Cheng, F. Li, Nano Energy 2019, 56, 100–108.
- 17L. Li, Y. Ma, F. Cui, Y. Li, D. Yu, X. Lian, Y. Hu, H. Li, S. Peng, Adv. Mater. 2023, 35, 2209628.
- 18M. Jiang, C. Fu, P. Meng, J. Ren, J. Wang, J. Bu, A. Dong, J. Zhang, W. Xiao, B. Sun, Adv. Mater. 2022, 34, 2102026.
- 19H. Yu, C. Lv, C. Yan, G. Yu, Small Methods 2024, 8, 2300758.
- 20X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang, X. Wang, C. Wu, Energy Environ. Sci. 2021, 14, 2036–2089.
- 21C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang, C. Wang, Y. Lu, L. Yin, Energy Environ. Sci. 2018, 11, 3201–3211.
- 22X. Liu, Y. Hao, J. Shu, H. M. K. Sari, L. Lin, H. Kou, J. Li, W. Liu, B. Yan, D. Li, J. Zhang, X. Li, Nano Energy 2019, 57, 414–423.
- 23Z. Zhou, N. Li, P. Wang, W.-L. Song, S. Jiao, H. Chen, D. Fang, J. Energy Chem 2020, 42, 17–26.
- 24C. Wang, Y. Ning, H. Huang, S. Li, C. Xiao, Q. Chen, L. Peng, S. Guo, Y. Li, C. Liu, Z.-S. Wu, X. Li, L. Chen, C. Gao, C. Wu, Q. Fu, Natl. Sci. Rev. 2021, 8. 289.
- 25A. Lv, M. Wang, H. Shi, S. Lu, J. Zhang, S. Jiao, Adv. Mater. 2023, 35, 2303943.
- 26F. Wang, J. Mao, Y. Zhao, Adv. Mater 2023, 35, 2307908.
- 27Y. Yao, Z. Xue, C. Li, J. Li, J. He, X. Zhang, Y. Xiang, Energy Storage Mater. 2024, 71, 103666.
- 28Z. Wang, Y. Li, Q. Zhou, Q. Li, R. Zhao, Z. Qiu, R. Zhang, Y. Sun, F. Wu, C. Wu, Y. Bai, Energy Mater. Adv. 2024, 5, 0109.
- 29W. Wang, F. Xiong, S. Zhu, J. Chen, J. Xie, Q. An, eScience 2022, 2, 278–294.
- 30Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, S. Wang, Adv. Mater. 2020, 32, 1905923.
- 31S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Adv. Mater. 2017, 29, 1700431.
- 32J. Peng, M. Ou, H. Yi, X. Sun, Y. Zhang, B. Zhang, Y. Ding, F. Wang, S. Gu, C. A. López, W. Zhang, Y. Liu, J. Fang, P. Wei, Y. Li, L. Miao, J. Jiang, C. Fang, Q. Li, M. T. Fernández-Díaz, J. A. Alonso, S. Chou, J. Han, Energy Environ. Sci. 2021, 14, 3130–3140.
- 33C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Nat. Commun. 2019, 10, 73.
- 34T. Qin, L. Qin, J. Li, Ionics 2022, 28, 2853–2863.
- 35W. Xing, D. Du, T. Cai, X. Li, J. Zhou, Y. Chai, Q. Xue, Z. Yan, J. Power Sources 2018, 401, 6–12.
- 36S. Park, J.-N. Chotard, D. Carlier, F. Fauth, A. Iadecola, C. Masquelier, L. Croguennec, Chem. Mater. 2023, 35, 3181–3195.
- 37C. Jin, Y. Wang, X. Zhao, J. Jin, Z. Li, X. Qu, L. Jiao, Y. Liu, Adv. Funct. Mater. 2025, 35, 2422101.
- 38M. T. Ahsan, Z. Ali, M. Usman, Y. Hou, Carbon Energy 2022, 4, 776–819.
- 39A. M. Abakumov, S. S. Fedotov, E. V. Antipov, J.-M. Tarascon, Nat. Commun. 2020, 11, 4976.
- 40A. Zhang, T. Chen, R. Zhao, Y. Wang, J. Yang, X. Han, X. Wang, C. Wu, Y. Bai, Angew. Chem. Int. Ed. 2025, 64, e202423824.
- 41M. Liu, Z. Rong, R. Malik, P. Canepa, A. Jain, G. Ceder, K. A. Persson, Energy Environ. Sci. 2015, 8, 964–974.
- 42W. Kaveevivitchai, A. Huq, S. Wang, M. J. Park, A. Manthiram, Small 2017, 13, 1701296.
- 43Z. Zhang, K. Xu, J. Yang, Z. Ji, Y. Ge, Z. Shi, Y. Zhang, K. Zhang, C. Wu, J. H. Pan, Energy Mater. Adv. 2024, 5, 0126.
- 44S. M. Montemayor, A. F. Fuentes, Ceram. Int. 2004, 30, 393–400.
- 45J. Yue, S. Li, S. Chen, J. Yang, X. Lu, Y. Li, R. Zhao, C. Wu, Y. Bai, Energy Mater. Adv. 2023, 4, 0050.
- 46X. Wang, B. Liu, Y. Zhang, T. Butburee, K. Ostrikov, S. Wang, W. Huang, EcoEnergy 2023, 1, 108–153.
10.1002/ece2.11 Google Scholar
- 47H. W. Yu, X. L. Wang, Q. L. Zhang, M. F. Liu, L. Li, Z. C. Xu, Z. B. Yan, S. G. Liu, J. Appl. Phys. 2020, 128, 234101.
- 48D. Tao, L. Ran, T. Li, Y. Cao, F. Xu, ACS Nano 2024, 18, 28810–28821.
- 49G.-L. He, M.-J. Chen, Y.-Q. Liu, X. Li, Y.-J. Liu, Y.-H. Xu, Appl. Surf. Sci. 2015, 351, 474–479.
- 50M. Imran, N. Zouli, T. Ahamad, S. M. Alshehri, M. R. Chandan, S. Hussain, A. Aziz, M. A. Dar, A. Khan, Nanoscale Adv 2021, 3, 1962–1975.
- 51O. Kwon, S. Sengodan, K. Kim, G. Kim, H. Y. Jeong, J. Shin, Y.-W. Ju, J. W. Han, G. Kim, Nat. Commun. 2017, 8, 15967.
- 52S. Xu, D. Pan, Y. Wu, N. Xu, H. Yang, L. Gao, W. Li, G. Xiao, Ind. Eng. Chem. Res. 2019, 58, 9276–9285.
- 53D. Ma, J. Li, H. Li, D. Yuan, Z. Ji, M. Manawan, C. P. de León Albarran, C. Wu, J. H. Pan, Energy Mater. Adv. 2024, 5, 0088.
- 54Y. Dong, F. Xu, Y. Li, T. Song, G. Tan, J. Phys. Conf. Ser. 2021, 2011, 012071.
- 55C. Ma, F. Xu, T. Song, ACS Appl. Mater. Interfaces 2022, 14, 20197–20207.
- 56Y. Guo, W. Wang, H. Lei, M. Wang, S. Jiao, Adv. Mater. 2022, 34, 2110109.
- 57M. Chen, S. Lu, X.-Z. Fu, J.-L. Luo, Adv. Sci. 2020, 7, 1903777.
- 58J. Liu, Z. Li, X. Huo, J. Li, J. Power Sources 2019, 422, 49–56.
- 59H. Wang, L. Zhao, H. Zhang, Y. Liu, L. Yang, F. Li, W. Liu, X. Dong, X. Li, Z. Li, X. Qi, L. Wu, Y. Xu, Y. Wang, K. Wang, H. Yang, Q. Li, S. Yan, X. Zhang, F. Li, H. Li, Energy Environ. Sci. 2022, 15, 311–319.
- 60Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Adv. Mater. 2023, 35, 2211527.
- 61D. Liu, Y. Zhao, C. Wu, W. Xu, S. Xi, M. Chen, L. Yang, Y. Zhou, Q. He, X. Li, B. Ge, L. Song, J. Jiang, Q. Yan, Nano Energy 2022, 98, 107296.
- 62Y. Liu, Y. Sun, E. Zhao, W. Yang, J. Lin, Q. Zhong, H. Qi, A. Deng, S. Yang, H. Zhang, H. He, S. Liu, Z. Chen, S. Wang, Adv. Funct. Mater. 2023, 33, 2301840.
- 63C. Han, H. Li, Y. Li, J. Zhu, C. Zhi, Nat. Commun. 2021, 12, 2400.
- 64K. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella, C. P. Grey, Nature 2018, 559, 556–563.
- 65Q. Pang, J. Meng, S. Gupta, X. Hong, C. Y. Kwok, J. Zhao, Y. Jin, L. Xu, O. Karahan, Z. Wang, S. Toll, L. Mai, L. F. Nazar, M. Balasubramanian, B. Narayanan, D. R. Sadoway, Nature 2022, 608, 704–711.
- 66S. Wang, Y. Guo, X. Du, L. Xiong, Z. Huang, X. Li, M. Ma, Z. Liang, Y. Xie, Energy Storage Mater. 2023, 60, 102826.
- 67C. Hu, Y. Li, D. Wang, C. Wu, F. Chen, L. Zhang, F. Wan, W. Hua, Y. Sun, B. Zhong, Z. Wu, X. Guo, Angew. Chem. Int. Ed. 2023, 135, e202312310.
- 68F. Wang, J. Mao, Y. Zhao, Adv. Mater. 2023, 35, 2307908.
- 69W. Hu, J. Zang, Q. Wang, S. Xiao, J. Zhang, F. Fang, Z. Ma, D. Sun, Y. Song, Adv. Energy Mater. 2025, 15, 2404650.
- 70X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong, Q. Wang, A. Borgna, Y.-W. Zhang, Z. Wang, H. Wang, Z. G. Yu, W. S. V. Lee, J. Xue, Nature 2022, 611, 702–708.
- 71S. Yuan, S. Cao, X. Chen, J. Wei, Z. Lv, H. Xia, L. Chen, R. B. F. Ng, F. L. Tan, H. Li, X. J. Loh, S. Li, X. Feng, X. Chen, J. Am. Chem. Soc. 2025, 147, 4089–4099.
- 72X. Wang, R. Gao, G. Fan, Y. Guo, C. Han, Y. Gao, A. Shen, L. Wu, X. Gu, Angew. Chem. Int. Ed. 2025, 64, e202501297.
- 73G. Zhang, J. Pei, Y. Wang, G. Wang, Y. Wang, W. Liu, J. Xu, P. An, H. Huang, L. Zheng, S. Chu, J. Dong, J. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202407509.
- 74X. Yan, S.-H. Luo, P. Li, X. Tian, S. Li, Mater. Today Chem 2024, 42, 102369.
- 75N. Li, M. Sun, W. H. Kan, Z. Zhuo, S. Hwang, S. E. Renfrew, M. Avdeev, A. Huq, B. D. McCloskey, D. Su, W. Yang, W. Tong, Nat. Commun. 2021, 12, 2348.
- 76Z. Liu, J. Shen, S. Feng, Y. Huang, D. Wu, F. Li, Y. Zhu, M. Gu, Q. Liu, J. Liu, M. Zhu, Angew. Chem. Int. Ed. 2021, 60, 20960–20969.
- 77L. Ma, N. Li, C. Long, B. Dong, D. Fang, Z. Liu, Y. Zhao, X. Li, J. Fan, S. Chen, S. Zhang, C. Zhi, Adv. Funct. Mater. 2019, 29, 1906142.
- 78L.-J. Yuan, B. Liu, L. X. Shen, Y.-K. Dai, Q. Li, C. Liu, W. Gong, X.-L. Sui, Z.-B. Wang, Adv. Mater. 2023, 35, 2305945.