Synergistic Light-Ultrasound-Driven Hydrogen Production by Hydrogen Iodide Decomposition Over Dual-Molecular Ferroelectric Heterostructure
Zi Ning Zhou
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorQing Dian Chong
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorYa Wen Yang
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorZong Wei Hu
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorWei Ren
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Sheng Sen Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510643 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Qiong Ye
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZi Ning Zhou
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorQing Dian Chong
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorYa Wen Yang
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorZong Wei Hu
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorWei Ren
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Sheng Sen Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510643 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Qiong Ye
Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A dual molecular ferroelectric heterojunction [(4,4-DFPD)2PbI4/(4,4-DFCHA)2PbI4], synthesized via a simple one-pot method, achieves a high H₂ evolution rate of 5.26 mmol·g−1·h−1 under light and ultrasound, significantly outperforming its individual components. Polarization-coupled energy-level alignment and Pb-I bond-driven charge transfer enhance directional carrier migration and suppress recombination.
Abstract
Emerging catalytic systems for hydrogen production via solar and mechanical energy conversion often face critical challenges, including band mismatch, interfacial charge recombination, and insufficient charge migration driving forces. To address core issues of low carrier separation efficiency and poor multi-field coupling in molecular ferroelectrics, this study proposes a molecular engineering strategy of dual molecular ferroelectric heterojunctions. We report a facile one-pot solution synthesis of a molecular ferroelectric heterojunction composed of 4,4-difluoropiperidinium lead iodide and 4,4-difluorocyclohexylamine lead iodide ((4,4-DFPD)2PbI4/(4,4-DFCHA)2PbI4), tailored for hydrogen iodide (HI) decomposition under simultaneous light -ultrasonic activation. Under dual-field excitation, the heterojunction achieves a remarkable hydrogen evolution rate of 5.26 mmol g−1 h−1, outperforming its individual constituents ((4,4-DFPD)2PbI4 and (4,4-DFCHA)2PbI4) by factors of 4.5 and 2.4, respectively. Kelvin probe force microscopy (KPFM) confirms efficient charge separation at the heterointerface, facilitated by energy-level alignment and polarization coupling. Both experimental and theoretical investigations attribute the enhanced performance to suppressed charge recombination and the synergistic action of ferroelectric and piezoelectric fields, jointly promoting directional charge migration. This work not only introduces a viable molecular ferroelectric strategy for designing high-efficiency piezo-photocatalytic systems but underscores the critical role of interfacial charge dynamics in catalytic optimization, offering theoretical insights and practical guidelines for next-generation solar-driven catalysts.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202510596-sup-0001-SuppMat.docx44.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Wang, Y. Zuo, J. Wang, Y. Wang, X. Shen, B. Qiu, L. Cai, F. Zhou, S. P. Lau, Y. Chai, Adv. Energy Mater. 2019, 9, 1901801.
- 2Q. Xue, H. Li, P. Jin, X. Zhou, F. Wang, Angew. Chem. Int. Ed. 2025, 64, e202423368.
- 3H. Hu, Z. Wang, L. Cao, L. Zeng, C. Zhang, W. Lin, C. Wang, Nat. Chem. 2021, 13, 358–366.
- 4Z. Zhou, Y. Yang, P. Cao, S. Zhang, Q. Ye, J. Colloid Interf. Sci. 2025, 685, 1018–1026.
- 5S. Yuan, X. Liang, Y. Zheng, Y. Chu, X. Ren, Z. Zeng, G. Nan, Y. Wu, Y. He, J. Colloid Interf. Sci. 2024, 670, 373–384.
- 6X. K. Wei, N. Domingo, Y. Sun, N. Balke, R. E. Dunin-Borkowski, J. Mayer, Adv. Energy Mater. 2022, 12, 2201199.
- 7J. Duan, J. Li, G. Divitini, D. Cortecchia, F. Yuan, J. You, S. Liu, A. Petrozza, Z. Wu, J. Xi, Adv. Mater. 2024, 36, 2403455.
- 8Y. Luan, Y. Li, Z. Li, B. Y. Zhang, J. Z. Ou, Adv. Sci. 2025, 12, 2500477.
- 9X. Liu, Y. Wang, W. Tian, F. Zhu, J. Wang, W. Wang, Y. Li, K. Zeng, J. Shi, Small 2025, 21, 2409801.
- 10Y. Peng, Y. Zhang, X. Wang, X. Y. Sui, M. Y. Lin, Y. Zhu, C. Jing, H. Y. Yuan, S. Yang, P. F. Liu, S. Dai, Z. Zheng, H. G. Yang, Y. Hou, Angew. Chem. Int. Ed. 2024, 63, e202319882.
- 11M. Cheng, Y. Si, N. Li, J. Guan, J. Am. Chem. Soc. 2024, 146, 26567–26573.
- 12R. Peng, B. Zhang, G. Dong, Y. Wang, G. Yang, J. Zhang, B. Peng, Y. Zhao, M. Liu, Adv. Funct. Mater. 2024, 34, 2316519.
- 13Y. Guo, B. Peng, G. Lu, G. Dong, G. Yang, B. Chen, R. Qiu, H. Liu, B. Zhang, Y. Yao, Y. Zhao, S. Li, X. Ding, J. Sun, M. Liu, Nat. Commun. 2024, 15, 4414.
- 14A. Kakekhani, S. Ismail-Beigi, J. Mater. Chem. A 2016, 4, 5235–5246.
- 15J. C. Qi, H. Peng, Z. K. Xu, Z. X. Wang, Y. Y. Tang, W. Q. Liao, G. Zou, Y. M. You, R. G. Xiong, Nat. Commun. 2024, 15, 6738.
- 16J. C. Qi, X. J. Song, H. Peng, X. G. Chen, R. G. Xiong, W. Q. Liao, Adv. Funct. Mater. 2025, 2502822.
- 17H. Hu, Z. Y. Jing, Q. Pan, T. T. Sha, H. R. Ji, X. X. Cao, X. J. Song, Z. J. Feng, J. Yao, R. J. Zhou, C. Wang, R. G. Xiong, Y. M. You, Adv. Mater. 2024, 36, 2413547.
- 18R. Samanta, R. Panday, A. Sahoo, N. Singh, K. R. Khator, R. Sahoo, V. B. Sharma, D. Kabra, J. K. Zareba, D. Ghosh, S. P. Senanayak, R. Boomishankar, Adv. Funct. Mater. 2025, 2501546.
- 19X. X. Cao, S. R. Ding, G. w. Du, Z. Y. Jing, Y. A. Xiong, Z. J. Feng, H. R. Ji, Q. Pan, Y. M. You, Adv. Mater. 2025, 37, 2416837.
- 20A. J. Kaufman, A. C. Nielander, G. J. Meyer, S. Maldonado, S. Ardo, S. W. Boettcher, Nat. Catal. 2024, 7, 615–623.
- 21C. Xu, P. Hang, C. Kan, X. Guo, X. Song, C. Xu, G. You, W. Q. Liao, H. Zhu, D. Wang, Q. Chen, Z. Hong, R. G. Xiong, X. Yu, L. Zuo, H. Chen, Nat. Commun. 2025, 16, 835.
- 22Q. Yao, H. Zhang, R. Yao, J. Zhu, W. Mao, X. a. Li, J. Alloy. Compd. 2024, 976, 173026.
- 23J. Harada, T. Shimojo, H. Oyamaguchi, H. Hasegawa, Y. Takahashi, K. Satomi, Y. Suzuki, J. Kawamata, T. Inabe, Nat. Chem. 2016, 8, 946–952.
- 24X. Song, G. Wei, J. Sun, C. Peng, J. Yin, X. Zhang, Y. Jiang, H. Fei, Nat. Catal. 2020, 3, 1027–1033.
- 25Q. Li, Z. Liang, Y. Huang, W. Zhang, S. Xie, Y. Zhong, C. Zhao, Z. Luo, S. Huang, Adv. Mater. 2025, 37, 2502894.
- 26Y. Kang, Z. Mao, Y. Wang, C. Pan, M. Ou, H. Zhang, W. Zeng, X. Ji, Nat. Commun. 2022, 13, 2425.
- 27N. Zhang, W. He, Z. Cheng, J. Lu, Y. Zhou, D. Ding, S. Rong, Chem. Eng. J. 2023, 466, 143160.
- 28S. Chen, J. Liao, Z. Zhou, S. Yang, Q. Gao, X. Cai, F. Peng, Y. Fang, S. Zhang, Appl. Catal. B-Environ. Energy 2021, 291, 120139.
- 29T. Z. Yang, H. N. Mao, Q. Q. Zhang, C. Xu, Q. Z. Gao, X. Cai, S. S. Zhang, Y. P. Fang, X. S. Zhou, F. Peng, S. Y. Yang, Angew. Chem. Int. Ed. 2024, 63, e202403022.
- 30X. S. Zhou, Z. X. Liang, Z. P. Wu, X. F. Zhou, X. M. Ning, L. Zhan, J. Luo, Adv. Powder Technol. 2025, 36, 104858.
- 31C. Xu, M. Zhang, Q. Gao, T. Li, S. Wang, Y. Wang, Y. Liu, H. Q. Peng, W. Zhang, B. Liu, Adv. Funct. Mater. 2025, 2501067.
- 32H. Feng, Y. Li, Y. Gu, X. Liu, L. Zhang, Z. Wang, Z. Li, Appl. Catal. B-Environ. Energy 2025, 365, 124862.
- 33A. Hao, X. Ning, X. Liu, L. Zhan, X. Qiu, Chem. Eng. J. 2024, 499, 155823.
- 34Y. Ju, H. Lin, C. Chen, R. Hou, Z. Wang, T. Hao, M. Xu, Y. Tang, F. Chen, Chem. Eng. J. 2024, 498, 155790.
- 35Z. Z. Liang, X. A. Li, Q. Z. Chen, X. L. Wang, P. Y. Su, J. F. Huang, Y. Zhou, L. M. Xiao, J. M. Liu, ACS Catal. 2024, 14, 10447–10461.
- 36X. Zhu, Z. Song, Z. Wang, W. Liu, B. Hong, J. Bao, C. Gao, S. Sun, Appl. Catal. B-Environ. Energy 2020, 274, 119010.
- 37H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z. L. Wang, Nano Lett. 2015, 15, 2372–2379.
- 38L. Wang, H. Xiao, T. Cheng, Y. Li, W. A. Goddard, J. Am. Chem. Soc. 2018, 140, 1994–1997.
- 39H. Xiang, P. Liu, W. Wang, R. Ran, W. Zhou, Z. Shao, J. Mater. Sci. Technol. 2022, 113, 138–146.
- 40H. Y. Zhang, X. J. Song, X. G. Chen, Z. X. Zhang, Y. M. You, Y. Y. Tang, R. G. Xiong, J. Am. Chem. Soc. 2020, 142, 4925–4931.
- 41T. T. Sha, Y. A. Xiong, Q. Pan, X. G. Chen, X. J. Song, J. Yao, S. R. Miao, Z. Y. Jing, Z. J. Feng, Y. M. You, R. G. Xiong, Adv. Mater. 2019, 31, 1901843.
- 42W. Huang, B. Chan, Y. Yang, P. Chen, J. Wang, L. Casey, C. Atzori, T. Schulli, O. Mathon, H. G. Hackbarth, N. M. Bedford, D. Appadoo, X. Li, T. Lin, R. Lin, J. Lee, Z. Wang, V. Chen, A. K. Cheetham, L. Wang, J. Hou, J. Am. Chem. Soc. 2025, 147, 3195–3205.
- 43Z. Fang, G. Wang, C. Guan, J. Zhang, Q. Xiang, Angew. Chem. Int. Ed. 2024, 63, e202411219.
- 44W. Li, Q. Qin, X. Li, H. Ying, D. Shen, J. Liu, J. Li, B. Li, R. Wu, X. Duan, Adv. Mater. 2024, 36, 2408367.
- 45Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, P. M. Ajayan, Nat. Mater. 2014, 13, 1135–1142.
- 46Z. Huang, W. Deng, Z. Zhang, B. Zhao, H. Zhang, D. Wang, B. Li, M. Liu, Y. Huangfu, X. Duan, Adv. Mater. 2023, 35, 2211252.
- 47H. g. Kim, H. J. Choi, Phys. Rev. B 2021, 103, 165419.
- 48H. S. S. R. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, Angew. Chem. Int. Ed. 2010, 49, 4059–4062.
- 49J. Kim, D. Jung, Y. Park, Y. Kim, D. W. Moon, T. G. Lee, Appl. Surf. Sci. 2007, 253, 4112–4118.
- 50S. A. Perusich, Macromolecules 2000, 33, 3431–3440.
- 51M. Cao, F. Yang, Q. Zhang, J. Zhang, L. Zhang, L. Li, X. Wang, W. L. Dai, J. Mater. Sci. Technol. 2021, 76, 189–199.
- 52P. Rathi, D. P. Singh, J. Mol. Struct. 2015, 1093, 201–207.
- 53Q. Chang, F. Wang, W. Xu, A. Wang, Y. Liu, J. Wang, Y. Yun, S. Gao, K. Xiao, L. Zhang, L. Wang, J. Wang, W. Huang, T. Qin, Angew. Chem. Int. Ed. 2022, 61, e202204273.
- 54J. N. Vagott, K. Bairley, J. Hidalgo, C. A. R. Perini, A. F. Castro-Mendez, S. Lombardo, B. Lai, L. Zhang, K. Kisslinger, J. Kacher, J. P. Correa-Baena, Chem. Mater. 2022, 34, 2553–2561.
- 55K. Jiang, F. Wu, G. Zhang, P. C. Y. Chow, C. Ma, S. Li, K. S. Wong, L. Zhu, H. Yan, J. Mater. Chem. A 2019, 7, 21662–21667.
- 56Y. Haruyama, T. Ideta, H. Ishigaki, K. Kanda, S. Matsui, Jpn. J. Appl. Phys., 2003 42, 1722–1724.
- 57X. Yang, Z. Zhou, Y. Zou, J. Kuang, D. Ye, S. Zhang, Q. Gao, S. Yang, X. Cai, Y. Fang, Appl. Catal. B-Environ. Energy 2023, 325, 122332.
- 58B. C. Beard, Appl. Surf. Sci. 1990, 45, 221–227.
- 59K. Rokesh, M. Sakar, D. Trong-On, Mater. Lett. 2019, 242, 99–102.
- 60Y. Tang, C. H. Mak, R. Liu, Z. Wang, L. Ji, H. Song, C. Tan, F. Barriere, H. Y. Hsu, Adv. Funct. Mater. 2020, 30, 2006919.
- 61Y. Li, L. Li, S. She, S. Chen, Y. Liu, B. Xu, F. W. Lee, X. Zhu, ACS Appl. Energy Mater. 2022, 5, 207–213.
- 62Z. Zhao, J. Wu, Y. Z. Zheng, N. Li, X. Li, Z. Ye, S. Lu, X. Tao, C. Chen, Appl. Catal. B-Environ. Energy 2019, 253, 41–48.
- 63S. Park, W. J. Chang, C. W. Lee, S. Park, H. Y. Ahn, K. T. Nam, Nat. Energy 2017, 2, 16185.
- 64C. Zhang, D. Lei, C. Xie, X. Hang, C. He, H. L. Jiang, Adv. Mater. 2021, 33, 2106308.
- 65Y. Wu, Q. Wu, Q. Zhang, Z. Lou, K. Liu, Y. Ma, Z. Wang, Z. Zheng, H. Cheng, Y. Liu, Y. Dai, B. Huang, P. Wang, Energ. Environ. Sci. 2022, 15, 1271–1281.
- 66J. Liu, H. Zhang, J. Wang, Y. Xie, Y. Gao, C. Sun, L. Wang, X. Zong, Appl. Catal. B-Environ. Energy 2024, 352, 124018.
- 67Y. Wu, P. Wang, Z. Guan, J. Liu, Z. Wang, Z. Zheng, S. Jin, Y. Dai, M. H. Whangbo, B. Huang, ACS Catal. 2018, 8, 10349–10357.
- 68H. Zhao, Y. Li, B. Zhang, T. Xu, C. Wang, Nano Energy 2018, 50, 665–674.
- 69C. Cai, Y. Teng, J. H. Wu, J. Y. Li, H. Y. Chen, J. H. Chen, D. B. Kuang, Adv. Funct. Mater. 2020, 30, 2001478.
- 70R. Li, X. Li, J. Wu, X. Lv, Y. Z. Zheng, Z. Zhao, X. Ding, X. Tao, J. F. Chen, Appl. Catal. B-Environ. Energy 2019, 259, 118075.
- 71X. Wang, H. Wang, H. Zhang, W. Yu, X. Wang, Y. Zhao, X. Zong, C. Li, ACS Energy Lett. 2018, 3, 1159–1164.
- 72J. Liu, Y. Xie, Y. Jiao, H. Zhang, J. Wang, Y. Gao, X. Zong, Energ. Environ. Sci. 2024, 17, 9526–9537.
- 73C. Men, L. Chen, H. Ji, Z. Qin, T. Su, Chem. Eng. J. 2023, 473, 145173.
- 74H. Wang, X. Wang, R. Chen, H. Zhang, X. Wang, J. Wang, J. Zhang, L. Mu, K. Wu, F. Fan, X. Zong, C. Li, ACS Energy Lett. 2019, 4, 40.
- 75X. Huang, R. Lei, J. Yuan, F. Gao, C. Jiang, W. Feng, J. Zhuang, P. Liu, Appl. Catal. B-Environ. Energy 2021, 282, 119586.
- 76F. Mumtaz, H. Jabbar, M. Z. Khan, A. Ghaffar, A. H. Baluch, S. Javed, T. Noor, Z. Ali, J. H. Koh, M. Saleem, Int. J. Hydrogen Energ. 2024, 78, 1468–1480.
- 77W. Han, Y. Wei, J. Wan, N. Nakagawa, D. Wang, Inorg. Chem. 2022, 61, 5397–5404.
- 78T. Zhang, Y. Cai, Y. Lou, J. Chen, J. Alloy. Compd. 2022, 893, 162329.
- 79Y. C. Wang, J. M. Wu, Adv. Funct. Mater. 2020, 30, 1907619.
- 80K. Aizu, J. Phys. Soc. Jap. 1969, 27, 387–396.
- 81J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Phys. Rev. 1962, 127, 1918.
- 82S. K. Kurtz, T. T. Perry, J. Appl. Phys. 1968, 39, 3798–3813.
- 83J. Wang, J. Ye, S. Chen, Q. Zhang, Molecules 2024, 29, 1617.
- 84X. Zheng, Y. Wei, X. Zhang, Z. Wei, W. Luo, X. Guo, J. Liu, G. Peng, W. Cai, H. Huang, T. Lv, C. Deng, X. Zhang, Adv. Funct. Mater. 2022, 32, 2202658.
- 85X. Ma, Z. Wang, Q. Qin, J. Chen, X. Liu, F. Zou, Z. Xu, W. Chen, G. Li, Y. Li, T. Zhai, L. Li, Adv. Mater. 2025, 37, 2500572.
- 86Y. Zhang, M. Dong, Y. Du, S. Yang, Y. Ren, Y. Guo, D. Gao, X. Lin, D. Yuan, G. Zhou, Y. Yan, L. Sun, R. Li, F. Yang, W. Hu, Matter 2025, 8, 101945.
- 87M. E. Farshchi, K. Asgharizadeh, H. Jalili, S. Nejatbakhsh, B. Azimi, H. Aghdasinia, M. Mohammadpourfard, J. Environ. Chem. Eng. 2024, 12, 113909.
- 88I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed. 2005, 44, 3565–3568.