Ultrathin PtSe2 Nanowires in Single-Walled Carbon Nanotubes for Hydrogen Evolution Reaction
Nan Si
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorRui Wang
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorXianyu Hu
State Key Laboratory of Integrated Chips and Systems, College of Integrated Circuits and Micro-Nano Electronics, Fudan University, Shanghai, China
These authors contributed equally to this work.
Search for more papers by this authorYide Chang
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorQingyuan He
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorYang Wang
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorYakui Mu
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Yanming Wang
Global Institute of Future Technology, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Siyu Liu
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qinglin Yuan
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorNan Si
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorRui Wang
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
These authors contributed equally to this work.
Search for more papers by this authorXianyu Hu
State Key Laboratory of Integrated Chips and Systems, College of Integrated Circuits and Micro-Nano Electronics, Fudan University, Shanghai, China
These authors contributed equally to this work.
Search for more papers by this authorYide Chang
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorQingyuan He
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorYang Wang
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorYakui Mu
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Yanming Wang
Global Institute of Future Technology, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Siyu Liu
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qinglin Yuan
School of Mechanical Engineering, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Minhang District, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
PtSe2 NWs grow anisotropically along the <110> direction inside the SWCNTs, and expose abundant zigzag edges, which contribute to the higher catalytic activity for HER. The as-prepared PtSe2 NWs exhibit excellent HER activity at extremely low Pt loading of 4.684 wt%, with an overpotential of 47 mV@10 mA cm−2 and a Tafel slope of 41.7 mV dec−1.
Abstract
Platinum selenide (PtSe2) has shown great potential for application in electrocatalysis. One-dimensional (1D) nanostructures are particularly advantageous for enhancing catalytic performance, as they expose abundant active sites at the edges and enable rapid charge transport. However, the synthesis of 1D PtSe2 nanostructures for efficient electrocatalysis remains a challenge. Here, we report the controllable synthesis of ultrathin (0.4–2.0 nm) PtSe2 nanowires (NWs) using single-walled carbon nanotubes (SWCNTs) as a confined template via direct selenization by chemical vapor deposition (CVD). The atom-resolved electron microscope combined with spectroscopy and theoretical calculations revealed that PtSe2 NWs grow anisotropically along the <110> direction inside the SWCNTs, possessing zigzag edges and higher thermodynamical stability. Owing to the rich-edges with abundant unsaturated Pt atoms, the as-prepared PtSe2 NWs exhibit excellent hydrogen evolution reaction (HER) activity at an extremely low Pt loading of 4.684 wt%, with an overpotential of 47 mV@10 mA cm−2 and a Tafel slope of 41.7 mV dec−1. This work provides a novel strategy for synthesizing 1D ultrathin NWs and offers the potential to achieve low-cost and efficient Pt-based catalysts in the future.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202510463-sup-0001-SuppMat.docx6 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Cao, Z. Ye, L. Yang, L. Gou, Z. Wang, Nanotechnology 2021, 32, 412001.
- 2X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, Q. J. Wang, Nat. Commun. 2018, 9, 1545.
- 3W. Zhang, Z. Huang, W. Zhang, Y. Li, Nano Res. 2014, 7, 1731–1737.
- 4L. Wang, S. Zhang, N. McEvoy, Y.-y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J.-M. Nunzi, L. Zhang, J. Wang, Laser Photonics Rev. 2019, 13, 1900052.
- 5Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, Y. Chai, Adv. Mater. 2017, 29, 1604230.
- 6H. Moon, J. Bang, S. Hong, G. Kim, J. W. Roh, J. Kim, W. Lee, ACS Nano 2019, 13, 13317–13324.
- 7Y. Gong, Z. Lin, Y.-X. Chen, Q. Khan, C. Wang, B. Zhang, G. Nie, N. Xie, D. Li, Nano-Micro Lett. 2020, 12, 174.
- 8L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, Y. H. Tsang, Adv. Funct. Mater. 2018, 28, 1705970.
- 9Z.-X. Zhang, Z. Long-Hui, X.-W. Tong, Y. Gao, C. Xie, Y. H. Tsang, L.-B. Luo, Y.-C. Wu, J. Phys. Chem. Lett. 2018, 9, 1185–1194.
- 10M. S. Shawkat, J. Gil, S. S. Han, T.-J. Ko, M. Wang, D. Dev, J. Kwon, G.-H. Lee, K. H. Oh, H.-S. Chung, T. Roy, Y. Jung, Y. Jung, ACS Appl. Mater. Interfaces 2020, 12, 14341–14351.
- 11Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.-Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H.-t. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, H.-J. Gao, Nano Lett. 2015, 15, 4013–4018.
- 12M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, S. Wu, T. Yoshikawa, K. Miyamoto, T. Okuda, Y. Wu, P. Yu, W. Duan, S. Zhou, 2D Mater. 2017, 4, 045015.
- 13Z. Wang, Q. Li, F. Besenbacher, M. Dong, Adv. Mater. 2016, 28, 10224–10229.
- 14H. Ma, Q. Qian, B. Qin, Z. Wan, R. Wu, B. Zhao, H. Zhang, Z. Zhang, J. Li, Z. Zhang, B. Li, L. Wang, X. Duan, Adv. Sci. 2022, 9, 2103507.
- 15S. Zeng, M. Zhao, F. Li, Z. Yang, H. Wu, C. Tan, Q. Sun, L. Yang, L. Lei, Z. Wang, Adv. Funct. Mater. 2024, 34, 2308681.
- 16H. Zheng, Y. Choi, F. Baniasadi, D. Hu, L. Jiao, K. Park, C. Tao, 2D Mater. 2019, 6, 041005.
- 17H. Li, J. Liu, N. Guo, L. Xiao, H. Zhang, S. Zhou, Y. Wu, S. Fan, CrystEngComm 2020, 22, 8017–8022.
- 18D. Hu, T. Zhao, X. Ping, H. Zheng, L. Xing, X. Liu, J. Zheng, L. Sun, L. Gu, C. Tao, D. Wang, L. Jiao, Angew. Chem. Int. Ed. 2019, 58, 6977–6981.
- 19S. Meng, Y. Yang, X. Dai, Y. Tang, M. He, Y. Gu, R. Jiang, F. Ding, H. Xu, Adv. Funct. Mater. 2024, 34, 2312165.
- 20Z. Li, M. Huang, J. Li, H. Zhu, Adv. Funct. Mater. 2023, 33, 2300376.
- 21X. Ping, D. Liang, Y. Wu, X. Yan, S. Zhou, D. Hu, X. Pan, P. Lu, L. Jiao, Nano Lett. 2021, 21, 3857–3863.
- 22V. V. Nascimento, W. Q. Neves, R. S. Alencar, G. Li, C. Fu, R. C. Haddon, E. Bekyarova, J. Guo, S. S. Alexandre, R. W. Nunes, A. G. Souza Filho, C. Fantini, ACS Nano 2021, 15, 8574–8582.
- 23J.-K. Qin, P.-Y. Liao, M. Si, S. Gao, G. Qiu, J. Jian, Q. Wang, S.-Q. Zhang, S. Huang, A. Charnas, Y. Wang, M. J. Kim, W. Wu, X. Xu, H.-Y. Wang, L. Yang, Y. Khin Yap, P. D. Ye, Nat. Electron. 2020, 3, 141–147.
- 24E. Flahaut, J. Sloan, S. Friedrichs, A. I. Kirkland, K. S. Coleman, V. C. Williams, N. Hanson, J. L. Hutchison, M. L. H. Green, Chem. Mater. 2006, 18, 2059–2069.
- 25J. Sloan, S. J. Grosvenor, S. Friedrichs, A. I. Kirkland, J. L. Hutchison, M. L. H. Green, Angew. Chem. Int. Ed. 2002, 41, 1156–1159.
10.1002/1521-3773(20020402)41:7<1156::AID-ANIE1156>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 26Y. Jiang, H. Xiong, T. Ying, G. Tian, X. Chen, F. Wei, Nat. Commun. 2024, 15, 475–482.
- 27Q. Sun, L. Geng, L. Wang, T. Che, D. Tian, L.-C. Xu, J. Zhao, Y. Zhong, Y. Wang, Y. Yang, L. Kang, Nano Lett. 2024, 24, 7732–7740.
- 28D. J. Hornbaker, S. J. Kahng, S. Misra, B. W. Smith, A. T. Johnson, E. J. Mele, D. E. Luzzi, A. Yazdani, Science 2002, 295, 828–831.
- 29T. Kodama, M. Ohnishi, W. Park, T. Shiga, J. Park, T. Shimada, H. Shinohara, J. Shiomi, K. E. Goodson, Nat. Mater. 2017, 16, 892–897.
- 30A. A. Eliseev, N. S. Falaleev, N. I. Verbitskiy, A. A. Volykhov, L. V. Yashina, A. S. Kumskov, V. G. Zhigalina, A. L. Vasiliev, A. V. Lukashin, J. Sloan, N. A. Kiselev, Nano Lett. 2017, 17, 805–810.
- 31H. Wang, Y. Yuan, L. Wei, K. Goh, D. Yu, Y. Chen, Carbon 2015, 81, 1–19.
- 32N. Si, R. Wang, Q. He, S. Liu, Y. Wang, Q. Yuan, Small Methods 2025, 2402020.
- 33M. Wang, M. S. Shawkat, Z. Xi, X. Xia, K. S. Lee, D. I. Son, T.-S. Bae, H. I. Ryu, H.-S. Chung, Y. Jung, J. Mater. Chem. A 2020, 8, 18925–18932.
- 34S. S. Han, J. H. Kim, C. Noh, J. H. Kim, E. Ji, J. Kwon, S. M. Yu, T.-J. Ko, E. Okogbue, K. H. Oh, H.-S. Chung, Y. Jung, G.-H. Lee, Y. Jung, ACS Appl. Mater. Interfaces 2019, 11, 13598–13607.
- 35J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435–445.
- 36H. Dai, C. M. Lieber, Annu. Rev. Phys. Chem. 1993, 44, 237–263.
- 37T. Che, S. Liu, Y. Wang, P. Zhao, C. Yang, X. Pan, H. Ji, L. Geng, Q. Sun, Z. Hu, A. Li, C. Zhou, L.-C. Xu, Y. Zhong, D. Tian, Y. Yang, L. Kang, ACS Nano 2024, 18, 32569–32577.
- 38S. Zhu, L. Ding, X. Zhang, K. Wang, X. Wang, F. Yang, G. Han, Angew. Chem. Int. Ed. 2023, 62, e202309545.
- 39J.-P. Tessonnier, O. Ersen, G. Weinberg, C. Pham-Huu, D. S. Su, R. Schlögl, ACS Nano 2009, 3, 2081–2089.
- 40F. Li, B. Cao, W. Zhu, H. Song, K. Wang, C. Li, Catalysts 2017, 7, 145.
- 41J. Fu, C. Li, Q. Wu, J. Hu, Y. Lu, W. Quan, Y. Peng, X. Wang, P. Yang, Y. Huan, Q. Ji, Y. Zhang, Small 2024, 20, 2401770.
- 42K. Dolui, C. D. Pemmaraju, S. Sanvito, ACS Nano 2012, 6, 4823–4834.
- 43A. R. Botello-Méndez, F. López-Urías, M. Terrones, H. Terrones, Nanotechnology 2009, 20, 325703.
- 44Z. Wang, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.-K. Joung, T. Okazaki, Z. Gu, J. Zhou, Z. Gao, G. Li, S. Sanvito, E. Wang, S. Iijima, J. Am. Chem. Soc. 2010, 132, 13840–13847.
- 45S. R. J. Likith, C. V. Ciobanu, Modeling, Characterization, and Production of Nanomaterials, Elsevier, Amsterdam, Netherlands, 2023, 51–71, https://doi.org/10.1016/B978-0-12-819905-3.00003-8.
10.1016/B978-0-12-819905-3.00003-8 Google Scholar
- 46Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, A. Zettl, Science 2009, 323, 1705–1708.
- 47D. Davelou, G. Kopidakis, E. Kaxiras, I. N. Remediakis, Phys. Rev. B 2017, 96, 165436.
- 48J. Li, T. Joseph, M. Ghorbani-Asl, S. Kolekar, A. V. Krasheninnikov, M. Batzill, Adv. Funct. Mater. 2022, 32, 2110428.
- 49R. Kempt, A. Kuc, T. Brumme, T. Heine, Small Struct. 2024, 5, 2300222.
- 50Y. Takasu, N. Ohashi, X. G. Zhang, Y. Murakami, H. Minagawa, S. Sato, K. Yahikozawa, Electrochim. Acta 1996, 41, 2595–2600.
- 51J. Zhao, H. Matsune, S. Takenaka, M. Kishida, Chem. Eng. J 2017, 308, 963–973.
- 52A. Y. Vasil'kov, A. V. Naumkin, I. O. Volkov, V. L. Podshibikhin, G. V. Lisichkin, A. R. Khokhlov, Surf. Interface Anal. 2010, 42, 559–563.
- 53J. H. Kim, J. Y. Cheon, T. J. Shin, J. Y. Park, S. H. Joo, Carbon 2016, 101, 449–457.
- 54Z. Wang, B. Xiao, Z. Lin, Y. Xu, Y. Lin, F. Meng, Q. Zhang, L. Gu, B. Fang, S. Guo, W. Zhong, Angew. Chem. Int. Ed. 2021, 60, 23388–23393.
- 55D. Miller, H. Sanchez Casalongue, H. Bluhm, H. Ogasawara, A. Nilsson, S. Kaya, J. Am. Chem. Soc. 2014, 136, 6340–6347.
- 56D. R. Butcher, M. E. Grass, Z. Zeng, F. Aksoy, H. Bluhm, W.-X. Li, B. S. Mun, G. A. Somorjai, Z. Liu, J. Am. Chem. Soc. 2011, 133, 20319–20325.
- 57Y. Tong, M. Bouaziz, H. Oughaddou, H. Enriquez, K. Chaouchi, F. Nicolas, S. Kubsky, V. Esaulov, A. Bendounan, RSC Adv. 2020, 10, 30934–30943.
- 58S. Cambré, M. Liu, D. Levshov, K. Otsuka, S. Maruyama, R. Xiang, Small 2021, 17, 2102585.
- 59Y. Zhang, J. Zhang, W. Lv, L. Gu, F. Yao, Y. Zhang, X. Chen, C. Jin, Carbon 2025, 243, 120493.
- 60X. Pan, X. Bao, Acc. Chem. Res. 2011, 44, 553–562.
- 61J. Xiao, X. Pan, F. Zhang, H. Li, X. Bao, Chem. Sci. 2017, 8, 278–283.
- 62K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.
- 63A. Vasylenko, J. Wynn, P. V. C. Medeiros, A. J. Morris, J. Sloan, D. Quigley, Phys. Rev. B 2017, 95, 121408.
- 64J. M. Wynn, P. V. C. Medeiros, A. Vasylenko, J. Sloan, D. Quigley, A. J. Morris, Phys. Rev. Mater. 2017, 1, 073001.
- 65H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, X. Zheng, Nat. Mater. 2016, 15, 48–53.
- 66B. E. Conway, B. V. Tilak, Electrochim. Acta 2002, 47, 3571–3594.
- 67P. E. P. Win, J. Wang, X. Jia, B. Qi, W. Chen, L. He, Y.-F. Song, J. Alloys Compd. 2020, 844, 156194.
- 68B. Hao, M. Gan, J. Guo, G. Li, Y. Song, Y. Shen, B. Xu, P. Liu, J. Guo, Adv. Funct. Mater. 2025, 35, 2413916.
- 69X. Chia, A. Adriano, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Adv. Funct. Mater. 2016, 26, 4306–4318.
- 70Y. Chang, P. Zhai, J. Hou, J. Zhao, J. Gao, Adv. Energy Mater. 2022, 12, 2102359.
- 71J. Shi, Y. Huan, M. Hong, R. Xu, P. Yang, Z. Zhang, X. Zou, Y. Zhang, ACS Nano 2019, 13, 8442–8451.
- 72S. Lin, Y. Liu, Z. Hu, W. Lu, C. H. Mak, L. Zeng, J. Zhao, Y. Li, F. Yan, Y. H. Tsang, X. Zhang, S. P. Lau, Nano Energy 2017, 42, 26–33.
- 73V. S. Lemos, D. Angeli de Moraes, I. de Lacerda Pataca, O. F. Verruma, C. P. Torres, A. Albuquerque, I. Rodríguez-Gutiérrez, D. B. Janes, F. Crasto de Lima, F. L. Souza, E. R. Leite, A. Fazzio, J. B. Souza Junior, Chem. Mater. 2024, 36, 8613–8622.
- 74G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251–14269.
- 75G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 76G. Kresse, J. Furthmüller, Comp. Mater. Sci. 1996, 6, 15–50.
- 77J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 78L. Zeng, T. Yuan, Z. Liu, Y. Zhu, D. Wu, D. Wang, Q. Zhou, R. Tang, J. Colloid Interf. Sci. 2023, 634, 897–905.
- 79C. Wang, L. Kuai, W. Cao, H. Singh, A. Zakharov, Y. Niu, H. Sun, B. Geng, Chem. Eng. J 2021, 426, 130749.
- 80Y. Qin, X. Han, S. Gadipelli, J. Guo, S. Wu, L. Kang, J. Callison, Z. Guo, J. Mater. Chem. A 2019, 7, 6543–6551.
- 81C. Xie, W. Chen, S. Du, D. Yan, Y. Zhang, J. Chen, B. Liu, S. Wang, Nano Energy 2020, 71, 104653.
Online Version of Record before inclusion in an issue
e202510463