Conduction Band Convergence and Modular Nanostructures: Driving High Thermoelectric Performance in n-Type PbSe
Indrajit Haldar
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorVaishali Taneja
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorNaveen Goyal
Materials Research Centre, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorMohammad Ubaid
Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorDebattam Sarkar
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorDinesh Kumar Kedia
Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorKumar Saurabh
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorSurjeet Singh
Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorKoushik Pal
Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorN. Ravishankar
Materials Research Centre, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorCorresponding Author
Kanishka Biswas
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
E-mail: [email protected]
Search for more papers by this authorIndrajit Haldar
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorVaishali Taneja
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorNaveen Goyal
Materials Research Centre, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorMohammad Ubaid
Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorDebattam Sarkar
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorDinesh Kumar Kedia
Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorKumar Saurabh
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
Search for more papers by this authorSurjeet Singh
Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorKoushik Pal
Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorN. Ravishankar
Materials Research Centre, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorCorresponding Author
Kanishka Biswas
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064 India
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
n-type lead chalcogenides showing high thermoelectric performance are rare due to the larger energy offset between the two lowest energy conduction bands minima, leaving ample opportunity to modulate electronic structure for improving their thermoelectric performance. Here, we present a remarkable thermoelectric figure of merit (zT) of ∼1.8 at 873 K in n-type PbSe doped with MoCl5 by modulation of the conduction bands, while simultaneously suppressing the phonon transport. Doping MoCl5 in PbSe induces notable convergence of conduction bands and an increased density of states near the Fermi level, mainly due to the contribution of Mo 4d orbital hybridized with the Se 4p-Pb 6p. This results in an improved Seebeck coefficient, despite maintaining a high n-type charge carrier concentration resulting in an excellent power factor (σS2) of ∼21 µW cm−1 K−2 at 873 K for PbSe + 1 mol% MoCl5. When the solid solution limit of the doping exceeds, it forms unique modular nano-heterostructures (5-30 nm) of PbSe-MoSe2 misfit layered compounds embedded in PbSe matrix. These nano-heterostructures significantly intensify phonon scattering, leading to an ultralow lattice thermal conductivity (κlat) of 0.20 W m−1 K−1 at ∼725 K in PbSe + 1 mol% MoCl5 sample.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202510305-sup-0001-SuppMat.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Yan, M. G. Kanatzidis, Nat. Mater. 2022, 21, 503–513.
- 2Y. Xiao, L.-D. Zhao, Science 2020, 367, 1196–1197.
- 3X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev. 2020, 120, 7399–7515.
- 4S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N. K. Singh, A. Soni, J. He, U. V. Waghmare, K. Biswas, Science 2021, 371, 722–727.
- 5B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science 2022, 377, 208–213.
- 6Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature 2011, 473, 66–69.
- 7J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554–557.
- 8M. Hong, W. Lyv, M. Li, S. Xu, Q. Sun, J. Zou, Z.-G. Chen, Joule 2020, 4, 2030–2043.
- 9C. Chang, M. Wu, D. He, Y. Pei, C. F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J. F. Li, J. He, L. D. Zhao, Science 2018, 360, 778–783.
- 10M. Dutta, T. Ghosh, K. Biswas, APL Mater. 2020, 8, 040910.
- 11B. Qin, D. Wang, X. Liu, Y. Qin, J.-F. Dong, J. Luo, J.-W. Li, W. Liu, G. Tan, X. Tang, J.-F. Li, J. He, L.-D. Zhao, Science 2021, 373, 556–561.
- 12M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, B. B. Iversen, Nat. Mater. 2008, 7, 811–815.
- 13V. Carnevali, S. Mukherjee, D. J. Voneshen, K. Maji, E. Guilmeau, A. V. Powell, P. Vaqueiro, M. Fornari, J. Am. Chem. Soc. 2023, 145, 9313–9325.
- 14P. Acharyya, K. Pal, B. Zhang, T. Barbier, C. Prestipino, P. Boullay, B. Raveau, P. Lemoine, B. Malaman, X. Shen, M. Vaillant, A. Renaud, B. P. Uberuaga, C. Candolfi, X. Zhou, E. Guilmeau, J. Am. Chem. Soc. 2024, 146, 13477–13487.
- 15N. Ma, Y.-Y. Li, L. Chen, L.-M. Wu, J. Am. Chem. Soc. 2020, 142, 5293–5303.
- 16D. Sarkar, T. Ghosh, S. Roychowdhury, R. Arora, S. Sajan, G. Sheet, U. V. Waghmare, K. Biswas, J. Am. Chem. Soc. 2020, 142, 12237–12244.
- 17K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414–418.
- 18T. Ghosh, M. Dutta, D. Sarkar, K. Biswas, J. Am. Chem. Soc. 2022, 144, 10099–10118.
- 19D. Sarkar, A. Bhui, I. Maria, M. Dutta, K. Biswas, Chem. Soc. Rev. 2024, 53, 6100–6149.
- 20J. M. Hodges, S. Hao, J. A. Grovogui, X. Zhang, T. P. Bailey, X. Li, Z. Gan, Y.-Y. Hu, C. Uher, V. P. Dravid, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 18115–18123.
- 21Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, J. Am. Chem. Soc. 2012, 134, 10031–10038.
- 22K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Chem. 2011, 3, 160–166.
- 23B. Jia, D. Wu, L. Xie, W. Wang, T. Yu, S. Li, Y. Wang, Y. Xu, B. Jiang, Z. Chen, Y. Weng, J. He, Science 2024, 384, 81–86.
- 24L.-D. Zhao, J. He, S. Hao, C.-I. Wu, T. P. Hogan, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 16327–16336.
- 25N. Shulumba, O. Hellman, A. J. Minnich, Phys. Rev. B 2017, 95, 014302.
- 26B. H. Jia, B. B. Jiang, J. Q. He, Mater. Today Adv. 2019, 4, 100029.
- 27S. Liu, B. Qin, L.-D. Zhao, Adv. Energy Mater. 2024, 15, 2404251.
- 28Y. Qin, B. Qin, T. Hong, X. Zhang, D. Wang, D. Liu, Z.-Y. Wang, L. Su, S. Wang, X. Gao, Z.-H. Ge, L.-D. Zhao, Science 2024, 383, 1204–1209.
- 29S. Wang, Y. Wen, S. Bai, Z. Zhao, Y. Li, X. Gao, Q. Cao, C. Chang, L.-D. Zhao, Energy Environ. Sci. 2024, 17, 2588–2597.
- 30Q. Deng, X.-L. Shi, M. Li, X. Tan, R. Li, C. Wang, Y. Chen, H. Dong, R. Ang, Z.-G. Chen, Nat. Commun. 2025, 16, 656.
- 31H. Wang, Y. Pei, A. D. LaLonde, G. J. Snyder, Proc. Natl. Acad. Sci. USA 2012, 109, 9705–9709.
- 32J. Sun, Y. Zhang, Y. Fan, X. Tang, G. Tan, J. Chem. Eng. 2022, 431, 133699.
- 33B. Jiang, Y. Yu, H. Chen, J. Cui, X. Liu, L. Xie, J. He, Nat. Commun. 2021, 12, 3234.
- 34C. Zhou, Y. Yu, Y. K. Lee, O. Cojocaru-Mirédin, B. Yoo, S.-P. Cho, J. Im, M. Wuttig, T. Hyeon, I. Chung, J. Am. Chem. Soc. 2018, 140, 15535–15545.
- 35D. Parker, D. J. Singh, Phys. Rev. B 2010, 82, 035204.
- 36Y. Zhu, D. Wang, T. Hong, L. Hu, T. Ina, S. Zhan, B. Qin, H. Shi, L. Su, X. Gao, L.-D. Zhao, Nat. Commun. 2022, 13, 4179.
- 37J. Cai, R. Wang, S. Zhuang, F. Gao, M. Zhang, Z. Zhang, X. Tan, G. Liu, J. Jiang, Adv. Func. Mater. 2024, 34, 2311217.
- 38A. Mrotzek, M. G. Kanatzidis, Acc. Chem. Res. 2003, 36, 111–119.
- 39A. Banik, K. Biswas, Angew. Chem. Int. Ed. 2017, 56, 14561–14566.
- 40A. Chatterjee, K. Biswas, Angew. Chem. Int. Ed. 2015, 54, 5623–5627.
- 41R. Atkins, M. Dolgos, A. Fiedler, C. Grosse, S. F. Fischer, S. P. Rudin, D. C. Johnson, Chem. Mater. 2014, 26, 2862–2872.
- 42G. Radovsky, R. Popovitz-Biro, D. G. Stroppa, L. Houben, R. Tenne, Acc. Chem. Res. 2014, 47, 406–416.
- 43A. Khadiev, M. B. Sreedhara, S. Hettler, D. Novikov, R. Arenal, R. Tenne, Acc. Chem. Res. 2024, 57, 3243–3253.
- 44Q. D. Gibson, T. Zhao, L. M. Daniels, H. C. Walker, R. Daou, S. Hébert, M. Zanella, M. S. Dyer, J. B. Claridge, B. Slater, M. W. Gaultois, F. Corà, J. Alaria, M. J. Rosseinsky, Science 2021, 373, 1017–1022.
- 45D. R. Merrill, D. B. Moore, S. R. Bauers, M. Falmbigl, D. C. Johnson, Materials 2015, 8, 2000–2029.
- 46G. A. Wiegers, R. J. Haange, J. Condens. Matter Phys. 1990, 2, 455–463.
- 47W. Y. Zhou, A. Meetsma, J. L. de Boer, G. A. Wiegers, Mater. Res. Bull. 1992, 27, 563–572.
- 48S. Chandra, U. Bhat, P. Dutta, A. Bhardwaj, R. Datta, K. Biswas, Adv. Mater. 2022, 34, 2203725.
- 49V. Taneja, N. Goyal, S. Das, S. Chandra, P. Dutta, N. Ravishankar, K. Biswas, J. Am. Chem. Soc. 2024, 146, 24716–24723.
- 50Q. Zhang, E. K. Chere, K. McEnaney, M. Yao, F. Cao, Y. Ni, S. Chen, C. Opeil, G. Chen, Z. Ren, Adv. Energy Mater. 2015, 5, 1401977.
- 51X. Qian, H. Wu, D. Wang, Y. Zhang, J. Wang, G. Wang, L. Zheng, S. J. Pennycook, L.-D. Zhao, Energy Environ. Sci. 2019, 12, 1969–1978.
- 52Y. Lee, S.-H. Lo, C. Chen, H. Sun, D.-Y. Chung, T. C. Chasapis, C. Uher, V. P. Dravid, M. G. Kanatzidis, Nat. Commun. 2014, 5, 3640.
- 53Z.-Z. Luo, S. Hao, X. Zhang, X. Hua, S. Cai, G. Tan, T. P. Bailey, R. Ma, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Energy Environ. Sci. 2018, 11, 3220–3230.
- 54C. Zhou, Y. Yu, Y.-L. Lee, B. Ge, W. Lu, O. Cojocaru-Mirédin, J. Im, S.-P. Cho, M. Wuttig, Z. Shi, I. Chung, J. Am. Chem. Soc. 2020, 142, 15172–15186.
- 55B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science 2021, 371, 830–834.
- 56L. Xu, Y. Xiao, S. Wang, B. Cui, D. Wu, X. Ding, L.-D. Zhao, Nat. Commun. 2022, 13, 6449.
- 57Y. Zhang, Q. Gong, L. Li, H. Yang, Y. Li, Q. Wang, Nano Res. 2015, 8, 1108–1115.
- 58Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proc. Natl. Acad. Sci. USA 2013, 110, 13261.
- 59G. Tan, S. Hao, S. Cai, T. P. Bailey, Z. Luo, I. Hadar, C. Uher, V. P. Dravid, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 4480–4486.
- 60M. T. Agne, R. Hanus, G. J. Snyder, Energy Environ. Sci. 2018, 11, 609–616.
- 61Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder, Y. Pei, Nat. Commun. 2017, 8, 13828.
- 62Y. Zhang, J.-H. Baek, C.-H. Lee, Y. Jung, S. C. Hong, G. Nolan, K. Watanabe, T. Taniguchi, G.-H. Lee, P. Y Huang, Sci. Adv. 2024, 10, eadk1874.
- 63C. L. Heideman, R. Rostek, M. D. Anderson, A. A. Herzing, I. M. Anderson, D. C. Johnson, J. Electron. Mater. 2010, 39, 1476–1481.
- 64C. L. Heideman, S. Tepfer, Q. Lin, R. Rostek, P. Zschack, M. D. Anderson, I. M. Anderson, D. C. Johnson, J. Am. Chem. Soc. 2013, 135, 11055–11062.
- 65C. L. Heideman, D. C. Johnson, Semicond. Sci. Technol. 2014, 29, 064007.
- 66M. M. Smeller, C. L. Heideman, Q. Lin, M. Beekman, M. D. Anderson, P. Zschack, I. M. Anderson, D. C. Johnson, Z. Anorg. Allg. Chem. 2012, 638, 2632–2639.
- 67Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phys. Rev. B 2012, 85, 184303.
- 68R. Chetty, J. Babu, T. Mori, Joule 2024, 8, 556–562.