Si/Carbon-dots with Surface N-C Sites Promoting Proton and Electron Transfers in Oxygen Reduction Reaction
Yankun Wang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorMingxian Zhang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorHaihua Wu
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorMeirong Huang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Yuanxing Fang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorProf. Masakazu Anpo
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Xinchen Wang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYankun Wang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorMingxian Zhang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorHaihua Wu
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorMeirong Huang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Yuanxing Fang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorProf. Masakazu Anpo
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Xinchen Wang
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116 P.R. China
Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, 350108 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
The *O2⁻ + H⁺ → *OOH step is considered the rate-determining step in the oxygen reduction reaction. Silane chain-grafted carbon dots with N-C active sites help overcome the energy barrier through promoting proton and electron transfers, thereby enhancing H2O2 production in photocatalytic oxygen reduction reactions.
Abstract
The oxygen reduction reaction (ORR) can proceed through either a two- or four-electron pathway, both of which are important for a wide range of applications. The intermediate conversion of *O2⁻ + H⁺ → *OOH recognized as the rate-determining step in ORR, with its efficiency strongly dependent on the nature of active sites at the surface of a catalyst. Herein, Si-supported carbon dots (Si-CDs) are introduced as cocatalysts in a photocatalytic system, where their nitrogen–carbon sites play a pivotal role in lowering the energy barrier for *OOH formation by promoting proton and electron transfers, thus enhancing the H2O2 production rate in ORR. This strategy is broadly applicable across a wide range of photocatalysts, both with and without use of sacrificial agents. The H2O2 production rate for Zn0.5Cd0.5S (30 mg) increased from 13.0 to 40.9 µmol h−1 when 0.6 mg of Si-CDs were added. In-situ characterizations and theoretical simulations are conducted to reveal the reaction pathway and the reduced energy requirements for the *O2⁻ + H⁺ → *OOH conversion. This study provides a unique example of overcoming a key barrier in ORR using a metal-free catalyst and promotes potential applications in various fields.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202509790-supp-0001-SuppMat.docx19.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Xie, X. Chen, W. Wang, X. Ke, X. Zhang, S. Wang, X. Wu, J. C. Yu, X. Wang, Angew. Chem. Int. Ed. 2024, 63, e202410179.
- 2P. Zhang, Y. Tong, Y. Liu, J. J. M. Vequizo, H. Sun, C. Yang, A. Yamakata, F. Fan, W. Lin, X. Wang, W. Choi, Angew. Chem. Int. Ed. 2020, 59, 16209–16217.
- 3Y. Wang, J. Zhang, X. Wu, S. Wang, M. Anpo, Y. Fang, Chin. Chem. Lett. 2025, 36, 110439.
- 4J. Li, J. Barrio, Y. Fang, Y. Pan, M. Volokh, S. Mondal, J. Tzadikov, L. Abisdris, A. Tashakory, X. Wang, X. Zhang, M. Shalom, Energy Fuels 2023, 37, 18145–18153.
- 5D. Zheng, Y. Wu, X. Yang, S. Wang, Y. Fang, ChemSusChem 2024, 17, e202400528.
- 6X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu, Y. Li, Chem 2019, 5, 1486–1511.
- 7H. Li, W. Wang, S. Xue, J. He, C. Liu, G. Gao, S. Di, S. Wang, J. Wang, Z. Yu, L. Li, J. Am. Chem. Soc. 2024, 146, 9124–9133.
- 8Y. Liu, L. Li, Z. Sang, H. Tan, N. Ye, C. Sun, Z. Sun, M. Luo, S. Guo, Nat. Synth. 2025, 4, 134–141.
- 9L. Li, X. Lv, Y. Xue, H. Shao, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 2024, 63, e202320218.
- 10Y.-Y. Tang, X. Luo, R.-Q. Xia, J. Luo, S.-K. Peng, Z.-N. Liu, Q. Gao, M. Xie, R.-J. Wei, G.-H. Ning, D. Li, Angew. Chem. Int. Ed. 2024, 63, e202408186.
- 11J. Yang, X. Zeng, M. Tebyetekerwa, Z. Wang, C. Bie, X. Sun, I. Marriam, X. Zhang, Adv. Energy Mater. 2024, 14, 2400740.
- 12W. Kang, R. Wei, H. Yin, D. Li, Z. Chen, Q. Huang, P. Zhang, H. Jing, X. Wang, C. Li, J. Am. Chem. Soc. 2023, 145, 3470–3477.
- 13S. Chai, X. Chen, X. Zhang, Y. Fang, R. S. Sprick, X. Chen, Environ. Sci.: Nano 2022, 9, 2464–2469.
- 14C. He, J. Lei, X. Li, Z. Shen, L. Wang, J. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202406143.
- 15C. Ru, X. Nie, Z.-A. Lan, Z. Pan, W. Xing, S. Wang, J. C. Yu, Y. Hou, X. Wang, Angew. Chem. Int. Ed. 2025, 64, e202417712.
- 16Z. Luo, X. Chen, Y. Hu, X. Chen, W. Lin, X. Wu, X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202304875.
- 17H. Xu, S. Xia, C. Li, Y. Li, W. Xing, Y. Jiang, X. Chen, Angew. Chem. Int. Ed. 2024, 63, e202405476.
- 18L. Li, Q. Bu, T. Lang, R. Zhang, Y. Pang, Y. Zhang, Y. Lin, D. Wang, T. Xie, D. Wang, Angew. Chem. Int. Ed. 2025, 64, e202501357.
- 19J. Cheng, W. Wang, J. Zhang, S. Wan, B. Cheng, J. Yu, S. Cao, Angew. Chem. Int. Ed. 2024, 63, e202406310.
- 20X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 2024, 15, 3212.
- 21H. Shi, Y. Li, K. Wang, S. Li, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 2022, 443, 136429.
- 22X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng, Q. Zhang, Y. Wang, Y. Feng, R. Feng, J. Hou, X. Zhou, P. Ma, H. Hu, K. Wang, C. Wang, L. Gan, Y. Zhao, Q. Liu, T. Zhang, K. Zheng, Nat. Commun. 2023, 14, 7115.
- 23C. Jin, H. Shen, J. Li, X. Guo, S. Rao, W. Yang, Q. Liu, Z. Sun, J. Yang, Nano Lett. 2024, 24, 14484–14492.
- 24J. Hou, K. Wang, X. Zhang, Y. Wang, H. Su, C. Yang, X. Zhou, W. Liu, H. Hu, J. Wang, C. Li, P. Ma, R. Zhang, Z. Wei, Z. Sun, Q. Liu, K. Zheng, ACS Catal. 2024, 14, 10893–10903.
- 25M. He, X. Zhang, S. Song, J. Yao, Z. Fang, W. Wang, X. Yuan, C. Li, H. Li, P. Li, W. Song, Z. Li, ACS Sustainable Chem. Eng. 2022, 10, 4494–4503.
- 26C. Chu, W. Miao, Q. Li, D. Wang, Y. Liu, S. Mao, Chem. Eng. J. 2022, 428, 132531.
- 27W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu, X. Zhou, R. Clowes, N. D. Browning, Y. Wu, J. W. Ward, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9902–9909.
- 28L. Liu, M.-Y. Gao, H. Yang, X. Wang, X. Li, A. I. Cooper, J. Am. Chem. Soc. 2021, 143, 19287–19293.
- 29F. He, Y. Lu, Y. Wu, S. Wang, Y. Zhang, P. Dong, Y. Wang, C. Zhao, S. Wang, J. Zhang, S. Wang, Adv. Mater. 2024, 36, 2307490.
- 30Y. Wang, Y. Fang, Y. Wang, H. Wu, M. Anpo, J. C. Yu, X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202307236.
- 31Z. Li, Z. Dong, Z. Zhang, B. Wei, C. Meng, W. Zhai, Y. Wang, X. Cao, B. Han, Y. Liu, Angew. Chem. Int. Ed. 2025, 64, e202420218.
- 32Z. Yong, T. Ma, Angew. Chem. Int. Ed. 2023, 62, e202308980.
- 33S. Deng, W.-P. Xiong, G.-X. Zhang, G.-F. Wang, Y.-X. Chen, W.-J. Xiao, Q.-K. Shi, A. Chen, H.-Y. Kang, M. Cheng, Y. Liu, J. Wang, Adv. Energy Mater. 2024, 14, 2401768.
- 34Y. Wang, H. Wang, S. Wang, Y. Fang, Angew. Chem. Int. Ed. 2024, 63, e202413768.
- 35W. Li, B. Han, Y. Liu, J. Xu, H. He, G. Wang, J. Li, Y. Zhai, X. Zhu, Y. Zhu, Angew. Chem. Int. Ed. 2025, 64, e202421356.
- 36Y. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 2023, 62, e202305355.
- 37Q. Zhu, L. Shi, Z. Li, G. Li, X. Xu, Angew. Chem. Int. Ed. 2024, 63, e202408041.
- 38B. Sheng, Y. Xie, Q. Zhao, H. Sheng, J. Zhao, Energy Environ. Sci. 2023, 16, 4612–4619.
- 39Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy 2023, 8, 361–371.
- 40X. Dong, Y. Wang, R. Guan, J. Ren, Z. Xie, Small 2021, 17, 2105273.
- 41Z. Song, Y. Shang, Q. Lou, J. Zhu, J. Hu, W. Xu, C. Li, X. Chen, K. Liu, C.-X. Shan, X. Bai, Adv. Mater. 2023, 35, 2207970.
- 42Y. Zhang, M. Li, S. Lu, Small 2023, 19, 2206080.
- 43E. Liu, D. Li, X. Zhou, G. Zhou, H. Xiao, D. Zhou, P. Tian, R. Guo, S. Qu, ACS Sus. Chem. Eng. 2019, 7, 9301–9308.
- 44B. Wang, Z. Sun, J. Yu, G. I. N. Waterhouse, S. Lu, B. Yang, SmartMat 2022, 3, 337–348.
- 45H.-J. Li, Y. Chen, H. Wang, H. Wang, Q. Liao, S. Han, Y. Li, D. Wang, G. Li, Y. Deng, Adv. Funct. Mater. 2023, 33, 2302862.
- 46Z. Xie, F. Wang, C.-Y. Liu, Adv. Mater. 2012, 24, 1716–1721.
- 47Z.-B. Zhou, P.-J. Tian, J. Yao, Y. Lu, Q.-Y. Qi, X. Zhao, Nat. Commun. 2022, 13, 2180.
- 48Z.-B. Zhou, X.-H. Han, Q.-Y. Qi, S.-X. Gan, D.-L. Ma, X. Zhao, J. Am. Chem. Soc. 2022, 144, 1138–1143.
- 49P. Duan, B. Zhi, L. Coburn, C. L. Haynes, K. Schmidt-Rohr, Magn. Reson. Chem. 2020, 58, 1130–1138.
- 50Y. Ma, L. Wu, X. Ren, Y. Zhang, S. Lu, Adv. Funct. Mater. 2023, 33, 2305867.
- 51Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, ACS Catal. 2013, 3, 882–889.
- 52G. Fu, D. Yang, S. Xu, S. Li, Y. Zhao, H. Yang, D. Wu, P. S. Petkov, Z.-A. Lan, X. Wang, T. Zhang, J. Am. Chem. Soc. 2024, 146, 1318–1325.
- 53H. Zhuzhang, X. Liang, J. Li, S. Xue, Y. Lin, B. Sa, S. Wang, G. Zhang, Z. Yu, X. Wang, Angew. Chem. Int. Ed. 2025, 64, e202421861.
- 54C. Feng, L. Zhang, Mater. Horiz 2024, 11, 1515–1527.
- 55Y. Xu, Y. Pan, W. Yahan, Y. Fang, M. Anpo, H. Yoshida, X. Wang, Appl. Catal. B Environ. Energy 2023, 331, 122701.
- 56Y. Xu, W. Lai, X. Cui, D. Zheng, S. Wang, Y. Fang, J. Colloid Interface Sci. 2024, 655, 822–829.
- 57J. Su, J. Zhang, S. Chai, Y. Wang, S. Wang, Y. Fang, Acta Phys.-Chim. Sin. 2024, 40, 2408012.
- 58S. Chai, S. Zhao, J. Su, J. Zhang, X. Chen, R. S. Sprick, Y. Fang, Chem. Sci. 2024, 15, 15496–15503.
- 59B. Su, Y. Kong, S. Wang, S. Zuo, W. Lin, Y. Fang, Y. Hou, G. Zhang, H. Zhang, X. Wang, J. Am. Chem. Soc. 2023, 145, 27415–27423.
- 60S. Mondal, D. Bagchi, M. Riyaz, S. Sarkar, A. K. Singh, C. P. Vinod, S. C. Peter, J. Am. Chem. Soc. 2022, 144, 11859–11869.
- 61C. Qin, X. Wu, L. Tang, X. Chen, M. Li, Y. Mou, B. Su, S. Wang, C. Feng, J. Liu, X. Yuan, Y. Zhao, H. Wang, Nat. Commun. 2023, 14, 5238.
- 62M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. Chen, Y. Zhou, K. Lei, L. Wang, W. Liu, H. Huang, T. Ma, Angew. Chem. Int. Ed. 2022, 61, e202200413.
- 63W. Zhang, M. Sun, J. Cheng, X. Wu, H. Xu, Adv. Mater. 2025, 37, 2500913.
- 64Y. Lin, J. Zou, X. Wu, S. Tong, Q. Niu, S. He, S. Luo, C. Yang, Nano Lett. 2024, 24, 6302–6311.
- 65S. Nayak, I. J. McPherson, K. A. Vincent, Angew. Chem. Int. Ed. 2018, 57, 12855–12858.
- 66H. Yang, H. Hou, M. Yang, Z. Zhu, H. Fu, D. Zhang, Y. Luo, W. Yang, Chem. Eng. J. 2023, 474, 145813.
- 67Z. An, H. Ma, H. Han, Z. Huang, Y. Jiang, W. Wang, Y. Zhu, H. Song, X. Shu, X. Xiang, J. He, ACS Catal. 2020, 10, 12437–12453.
- 68L. Luo, W. Chen, S.-M. Xu, J. Yang, M. Li, H. Zhou, M. Xu, M. Shao, X. Kong, Z. Li, H. Duan, J. Am. Chem. Soc. 2022, 144, 7720–7730.
- 69M. Guo, P. Ma, J. Wang, H. Xu, K. Zheng, D. Cheng, Y. Liu, G. Guo, H. Dai, E. Duan, J. Deng, Angew. Chem. Int. Ed. 2022, 61, e202203827.
- 70J. Luo, C. Fan, L. Tang, Y. Liu, Z. Gong, T. Wu, X. Zhen, C. Feng, H. Feng, L. Wang, L. Xu, M. Yan, Appl. Catal. B Environ. Energy 2022, 301, 120757.