Dual-Mode Strain Relief via Zinc Acetate Enables High-Efficiency InP Quantum Dot Light-Emitting Diodes
Changwei Yuan
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macao, 999078 China
Both authors contributed equally to this work.
Search for more papers by this authorProf. Qun Wan
School of Resources and Environment, Nanchang University, Nanchang, 330031 China
Both authors contributed equally to this work.
Search for more papers by this authorXinrong Liao
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorMengda He
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCanan Li
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Zhemin Shen
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Baoquan Sun
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Zan Qu
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Long Kong
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Liang Li
Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macao, 999078 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChangwei Yuan
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macao, 999078 China
Both authors contributed equally to this work.
Search for more papers by this authorProf. Qun Wan
School of Resources and Environment, Nanchang University, Nanchang, 330031 China
Both authors contributed equally to this work.
Search for more papers by this authorXinrong Liao
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorMengda He
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCanan Li
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Zhemin Shen
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorProf. Baoquan Sun
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Zan Qu
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Long Kong
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Liang Li
Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macao, 999078 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This study presents a novel strain engineering strategy that enables stress relief and uniform shell growth at the InP quantum dot coreshell interface using a small-molecule Zn(Ac)2 precursor. This approach significantly reduces interfacial strain and boosts the PLQY to nearly 100%. The resulting QLEDs demonstrate enhanced charge injection and energy level alignment, achieving an external quantum efficiency of up to 26.3%, offering a scalable platform for advanced quantum dot and device development.
Abstract
Heteroepitaxial shell growth on quantum dots (QDs) is essential for tailoring carrier dynamics but is often hampered by core–shell interface strain, which becomes more prominent in environmentally friendly InP QDs due to their significant size effect. Although post-treatment of InP cores with zinc compounds is a common approach to alleviate interface strain, conventional synthesis methods often fail to achieve effective doping, typically leaving zinc on the core surface rather than within the lattice. Herein, we present a dual-mode strain relief strategy using the small-molecule precursor Zn(Ac)2. Its ionic bonding character and low steric hindrance enable efficient Zn doping into the InP core and promote uniform epitaxial shell growth, leading to a 50% reduction in interfacial strain and a near-unity photoluminescence quantum yield in InP QDs. This approach simultaneously addresses two major sources of strain: lattice mismatch between the core and shell and steric hindrance from bulky surface ligands. The fabricated green InP-based QLED achieved a high external quantum efficiency of 26.3% and a current efficiency of 108.3 cd A−1. We believe this strategy provides a general and scalable strain engineering platform for QDs, with broad applicability across various material systems.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202509765-sup-0001-SuppMat.docx26.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, E. H. Sargent, Science 2021, 373, eaaz8541.
- 2Q. A. Akkerman, G. Rainò, M. V. Kovalenko, L. Manna, Nat. Mater. 2018, 17, 394–405.
- 3A. H. Proppe, D. B. Berkinsky, H. Zhu, T. Šverko, A. E. K. Kaplan, J. R. Horowitz, T. Kim, H. Chung, S. Jun, M. G. Bawendi, Nat. Nanotechnol. 2023, 18, 993–999.
- 4O. Voznyy, B. R. Sutherland, A. H. Ip, D. Zhitomirsky, E. H. Sargent, Nat. Rev. Mater. 2017, 2, 17026.
- 5F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, E. H. Sargent, Nature 2017, 544, 75–79.
- 6K. Wei, T. Zhou, Y. Jiang, C. Sun, Y. Liu, S. Li, S. Liu, X. Fu, C. Hu, S. Tian, Y. Yang, X. Fu, N. AlMasoud, S. M. H. Qaid, M. K. Nazeeruddin, H.-Y. Hsu, W.-D. Li, J. T. Kim, R. Long, W. Zhang, J. Chen, M. Yuan, Nature 2025, 638, 949–956.
- 7J. Liu, J. Zhang, Chem. Rev. 2020, 120, 2123–2170.
- 8Z. Li, J. Wei, F. Wang, Y. Tang, A. Li, Y. Guo, P. Huang, S. Brovelli, H. Shen, H. Li, Adv. Energy Mater. 2021, 11, 2101693.
- 9H. Lee, J. Y. Woo, D. Y. Park, I. Jo, J. Park, Y. Lee, Y. Koo, J. Choi, H. Kim, Y.-H. Kim, M. S. Jeong, S. Jeong, K.-D. Park, ACS Nano 2021, 15, 9057–9064.
- 10D. Kim, W. Shcherbakov-Wu, S. K. Ha, W. S. Lee, W. A. Tisdale, ACS Nano 2022, 16, 14713–14722.
- 11Y.-S. Park, J. Lim, V. I. Klimov, Nat. Mater. 2019, 18, 249–255.
- 12B. Li, F. Chen, H. Xu, Y. Song, X. Yan, Q. Xu, L. Wu, Y. Yan, W. Hou, W. Cao, H. Shen, F. Fan, Nat. Rev. Electr. Eng. 2024, 1, 412–425.
10.1038/s44287-024-00059-0 Google Scholar
- 13Y.-S. Park, J. Roh, B. T. Diroll, R. D. Schaller, V. I. Klimov, Nat. Rev. Mater. 2021, 6, 382–401.
- 14J. Zhu, Y. Li, X. Lin, Y. Han, K. Wu, Nat. Mater. 2024, 23, 1027–1040.
- 15G. Almeida, R. F. Ubbink, M. Stam, I. du Fossé, A. J. Houtepen, Nat. Rev. Mater. 2023, 8, 742–758.
- 16Y. Bian, X. Yan, F. Chen, Q. Li, B. Li, W. Hou, Z. Lu, S. Wang, H. Zhang, W. Zhang, D. Zhang, A. Tang, F. Fan, H. Shen, Nature 2024, 635, 854–859.
- 17Y. Choi, D. Hahm, W. K. Bae, J. Lim, Nat. Commun. 2023, 14, 43.
- 18B. Chen, D. Li, F. Wang, Small 2020, 16, e2002454.
- 19T. Aubert, A. A. Golovatenko, M. Samoli, L. Lermusiaux, T. Zinn, B. Abécassis, A. V. Rodina, Z. Hens, Nano Lett. 2022, 22, 1778–1785.
- 20P. Ramasamy, N. Kim, Y.-S. Kang, O. Ramirez, J.-S. Lee, Chem. Mater. 2017, 29, 6893–6899.
- 21M. Rafipoor, D. Dupont, H. Tornatzky, M. D. Tessier, J. Maultzsch, Z. Hens, H. Lange, Chem. Mater. 2018, 30, 4393–4400.
- 22H. Zhang, X. Ma, Q. Lin, Z. Zeng, H. Wang, L. S. Li, H. Shen, Y. Jia, Z. Du, J. Phys. Chem. Lett. 2020, 11, 960–967.
- 23H. S. Chen, C. Y. Chen, Y. C. Wu, Adv. Mater. 2024, 37, 2407026.
- 24N. Kirkwood, A. De Backer, T. Altantzis, N. Winckelmans, A. Longo, F. V. Antolinez, F. T. Rabouw, L. De Trizio, J. J. Geuchies, J. T. Mulder, N. Renaud, S. Bals, L. Manna, A. J. Houtepen, Chem. Mater. 2020, 32, 557–565.
- 25S. Gupta, S. V. Kershaw, A. L. Rogach, Adv. Mater. 2013, 25, 6923–6944.
- 26V. A. Vlaskin, C. J. Barrows, C. S. Erickson, D. R. Gamelin, J. Am. Chem. Soc. 2013, 135, 14380–14389.
- 27D. Shin, H. J. Lee, D. Jung, J. A. Chae, J. W. Park, J. Lim, S. Im, S. Min, E. Hwang, D. C. Lee, Y. S. Park, J. H. Chang, K. Park, J. Kim, J. S. Park, W. K. Bae, Adv. Mater. 2024, 37, 2312250.
- 28C. Yuan, M. He, X. Liao, M. Liu, Q. Zhang, Q. Wan, Z. Qu, L. Kong, L. Li, Chem. Sci. 2023, 14, 13119–13125.
- 29L. Wang, T. Liu, T. Wu, J. Lu, Nature 2022, 611, 61–67.
- 30G. K. Williamson, W. H. Hall, Acta Metall. 1953, 1, 22–31.
- 31G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, S. I. Seok, Science 2020, 370, 108–112.
- 32D. Liu, D. Luo, A. N. Iqbal, K. W. P. Orr, T. A. S. Doherty, Z. H. Lu, S. D. Stranks, W. Zhang, Nat. Mater. 2021, 20, 1337–1346.
- 33H. Tsai, R. Asadpour, J. C. Blancon, C. C. Stoumpos, O. Durand, J. W. Strzalka, B. Chen, R. Verduzco, P. M. Ajayan, S. Tretiak, J. Even, M. A. Alam, M. G. Kanatzidis, W. Nie, A. D. Mohite, Science 2018, 360, 67–70.
- 34H. Van Avermaet, P. Schiettecatte, S. Hinz, L. Giordano, F. Ferrari, C. Nayral, F. Delpech, J. Maultzsch, H. Lange, Z. Hens, ACS Nano 2022, 16, 9701–9712.
- 35T. Kim, K. H. Kim, S. Kim, S. M. Choi, H. Jang, H. K. Seo, H. Lee, D. Y. Chung, E. Jang, Nature 2020, 586, 385–389.
- 36Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, Y. Xie, Nat. Commun. 2012, 3, 1057.
- 37K. Beppu, S. Yamazoe, A. Yamada, K. Nitta, T. Uruga, T. Wada, Jpn. J. Appl. Phys. 2019, 58, 105502.
- 38H. Akiho, T. Yamamoto, Y. Tochihara, N. Noda, S. Noguchi, S. Ito, Fuel 2012, 102, 156–161.
- 39W. Yang, Y. Yang, A. L. Kaledin, S. He, T. Jin, J. R. McBride, T. Lian, Chem. Sci. 2020, 11, 5779–5789.
- 40J. Zhang, J. Wang, L. Cai, S. Wang, K. Wu, B. Sun, W. Zheng, S. V. Kershaw, G. Jia, X. Zhang, A. L. Rogach, X. Yang, Angew. Chem., Int. Ed. 2024, 63, e202403996.
- 41J. Zhang, C. Li, J. Li, X. Peng, Chem. Mater. 2023, 35, 7049–7059.
- 42L. Lv, J. Li, Y. Wang, Y. Shu, X. Peng, J. Am. Chem. Soc. 2020, 142, 19926–19935.
- 43Y. Deng, F. Peng, Y. Lu, X. Zhu, W. Jin, J. Qiu, J. Dong, Y. Hao, D. Di, Y. Gao, T. Sun, M. Zhang, F. Liu, L. Wang, L. Ying, F. Huang, Y. Jin, Nat. Photonics 2022, 16, 505–511.
- 44X. T. Zhu, X. Luo, Y. Z. Deng, H. Wei, L. Ying, F. Huang, Y. Y. Hu, Y. Z. Jin, Sci. Adv. 2024, 10, eado0614.
- 45Y. Gao, Q. T. Cai, Y. F. He, D. S. Zhang, Q. L. Cao, M. Y. Zhu, Z. C. Ma, B. D. Zhao, H. P. He, D. W. Di, Z. Z. Ye, X. L. Dai, Sci. Adv. 2024, 10, eado5645.
- 46B. G. Jeong, J. H. Chang, D. Hahm, S. Rhee, M. Park, S. Lee, Y. Kim, D. Shin, J. W. Park, C. Lee, D. C. Lee, K. Park, E. Hwang, W. K. Bae, Nat. Mater. 2022, 21, 246–252.
- 47S. Q. Sun, J. W. Tai, W. He, Y. J. Yu, Z. Q. Feng, Q. Sun, K. N. Tong, K. Shi, B. C. Liu, M. Zhu, G. Wei, J. Fan, Y. M. Xie, L. S. Liao, M. K. Fung, Adv. Mater. 2024, 36, 2400421.
- 48H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang, Z. Du, L. S. Li, Z. Zhang, Nat. Photonics 2019, 13, 192–197.
- 49H. Li, Y. Bian, W. Zhang, Z. Wu, T. K. Ahn, H. Shen, Z. Du, Adv. Func. Mater. 2022, 32, 2204529.
- 50N. S. B. Humam, Y. Sato, M. Takahashi, S. Kanazawa, N. Tsumori, P. Regreny, M. Gendry, T. Saiki, Opt. Exp. 2014, 22, 14830.
- 51J. Chu, W. Wang, Q. Yu, C.-Y. Lao, L. Zhang, K. Xi, K. Han, L. Xing, L. Song, M. Wang, Y. Bao, J. Mater. Chem. A 2020, 8, 779–788.