A Dual-Atom La2 Catalyst for the Oxygen Reduction Reaction
Jingru Sun
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorTianmi Tang
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorSiying Zhang
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorSiyu Chen
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorYingying Duan
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorXue Bai
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorXiaoqin Xu
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorCorresponding Author
Xiaodi Niu
College of Food Science and Engineering, Jilin University, Changchun, 130062 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhenlu Wang
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jingqi Guan
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJingru Sun
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorTianmi Tang
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorSiying Zhang
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorSiyu Chen
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorYingying Duan
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorXue Bai
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorXiaoqin Xu
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
Search for more papers by this authorCorresponding Author
Xiaodi Niu
College of Food Science and Engineering, Jilin University, Changchun, 130062 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhenlu Wang
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jingqi Guan
Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Using an ultra-fast printing technology, we have successfully embedded diatomic lanthanum sites onto a graphene framework, which shows excellent ORR performance. The La2-N6 configuration structure can effectively reduce the reaction barrier of RDS and promote effective charge transfer, thus enhancing the catalytic process, on which the intermediates and structural evolution were well uncovered by combining advanced characterizations and theoretical calculations.
Abstract
Rare earth lanthanum element has a large atomic radius, multi-shell orbital electrons, and Fenton-like reaction inertia, on which a localized high-coordination structure can be easily formed for the favorable adsorption of reaction intermediates. However, for single-atom lanthanum sites, due to the loss of all the outmost s and d electrons, the practically vacuous outmost orbitals are stable but sleepy for the oxygen reduction reaction (ORR). Here, we synthesize a novel dual-atom La catalyst onto N-doped graphene (La2-NG) by a Joule ultrafast heating method, which shows a half-wave potential of 0.893 V for the ORR. The La2-NG-assembled zinc–air battery demonstrates a great open circuit voltage of 1.52 V and a maximal power density of 192 mW cm−2. Operando X-ray absorption spectra reveal the change of valence states of La and the dynamic structural evolution of the La2-N6 moiety embedded onto the graphene during the ORR, through which the adsorption/desorption of oxygen reduction intermediates can be reasonably regulated. Theoretical calculations further demonstrate that the La2-N6 structure can decrease the reaction energy barrier and promote charge transfer.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202509063-supp-0001-SuppMat.docx1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Zhang, M. Yu, S. Tao, Nano Res. 2024, 17, 7077–7116.
- 2Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng, J. Wang, J. Liu, D. Luo, Y. Zhang, Z. Shi, X. Wang, Y.-P. Deng, Z. Chen, Nano-Micro Lett. 2024, 16, 162.
- 3X. Han, X. Yu, H. S. Park, Mater. Chem. Front. 2024, 8, 1536–1562.
- 4P. Lianos, Phys. Chem. Chem. Phys. 2023, 25, 11883–11891.
- 5F. Liu, X. Lu, C. Shi, Z. Sun, Batteries Supercaps 2024, 7, e202400402.
- 6E. V. Rebrov, P.-Z. Gao, Catalysts 2023, 13, 1289.
- 7L. Yan, J. Chen, C. Yang, J. Ning, Y. Hu, Small Sci. 2023, 4, 2300094.
- 8W. Shao, R. Yan, M. Zhou, L. Ma, C. Roth, T. Ma, S. Cao, C. Cheng, B. Yin, S. Li, Electrochem. Energy Rev. 2023, 6, 11.
- 9Z. Fan, H. Wan, H. Yu, J. Ge, Chin. J. Catal. 2023, 54, 56–87.
- 10J. Yu, C. Su, L. Shang, T. Zhang, ACS Nano 2023, 17, 19514–19525.
- 11L. Qi, J. Guan, Sci. Bull. 2025, 70, 1856–1871.
- 12J. Hu, W. Liu, C. Xin, J. Guo, X. Cheng, J. Wei, C. Hao, G. Zhang, Y. Shi, J. Mater. Chem. A 2021, 9, 24803–24829.
- 13X. Bai, Y. Wang, J. Han, S. Chen, X. Niu, J. Guan, Chem. Sci. 2024, 15, 19466–19472.
- 14A. M. Roth-Zawadzki, A. J. Nielsen, R. E. Tankard, J. Kibsgaard, ACS Catal. 2024, 14, 1121–1145.
- 15X. Xu, J. Guan, Chem. Sci. 2024, 15, 14585–14607.
- 16S. Ajmal, Y. Zhao, G. Yasin, F. O. Boakye, M. Tabish, M. M. Alam, A. G. Al-Sehemi, W. Zhao, ChemCatChem 2024, 16, e202301392.
- 17L. Peng, L. Shang, T. Zhang, G. I. N. Waterhouse, Adv. Energy Mater. 2020, 10, 2003018.
- 18M. Zhou, W. Kong, M. Xue, H. Li, M. A. Khan, B. Liu, F. Lu, X. Zeng, Catal. Sci. Technol. 2023, 13, 4615–4634.
- 19A. Kumar, D. K. Das, R. K. Sharma, M. Selvaraj, M. A. Assiri, S. Ajmal, G. Zhang, R. K. Gupta, G. Yasin, Ind. Eng. Chem. 2023, 123, 404–411.
- 20H. Sakai, S. Hirai, M. Nagao, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, J. Alloys Compd. 2023, 935, 167986.
- 21D. Ghosh, S. Parwaiz, P. Mohanty, D. Pradhan, Dalton Trans. 2020, 49, 17594–17604.
- 22X. Xu, T. Gan, J. Guan, CCS Chem. 2025, 10.31635/ccschem.025.202505566.
- 23Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye, J. Chen, Y. Lei, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202219191.
- 24X. Wang, Z. Chen, Z. Han, H. Gai, J. Zhou, Y. Wang, P. Cui, J. Ge, W. Xing, X. Zheng, M. Huang, H. Jiang, Adv. Funct. Mater. 2022, 32, 2111835.
- 25R. Hu, Y. Li, Q. Zeng, J. Shang, Appl. Surf. Sci. 2020, 525, 146588.
- 26Z. Xiao, P. Sun, Z. Qiao, K. Qiao, H. Xu, S. Wang, D. Cao, Chem. Eng. J. 2022, 446, 137112.
- 27S. Huang, Z. Qiao, P. Sun, K. Qiao, K. Pei, L. Yang, H. Xu, S. Wang, Y. Huang, Y. Yan, D. Cao, Appl. Catal., B 2022, 317, 121770.
- 28X. Cheng, Y. Wang, Y. Lu, L. Zheng, S. Sun, H. Li, G. Chen, J. Zhang, Appl. Catal., B 2022, 306, 121112.
- 29M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang, C. Tian, L. Wang, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 14005–14012.
- 30X. Man, Y. Chang, J. Jia, Mol. Catal. 2024, 565, 114389.
- 31Z. Chen, X. Su, J. Ding, N. Yang, W. Zuo, Q. He, Z. Wei, Q. Zhang, J. Huang, Y. Zhai, Appl. Catal. B. 2022, 308, 121206.
- 32L. Li, Y. Li, R. Huang, X. Cao, Y. Wen, ChemCatChem 2021, 13, 4645–4651.
- 33J. Zhao, J. Liu, C. Jin, N. Wang, F. Wang, Chem. – Eur. J. 2020, 26, 12606–12614.
- 34L. Yin, S. Zhang, M. Sun, S. Wang, B. Huang, Y. Du, Adv. Mater. 2023, 35, 2302485.
- 35Y. Zhao, H. Wang, J. Li, Y. Fang, Y. Kang, T. Zhao, C. Zhao, Adv. Funct. Mater. 2023, 33, 2305268.
- 36B. Deng, X. Wang, D. X. Luong, R. A. Carter, Z. Wang, M. B. Tomson, J. M. Tour, Sci. Adv. 2022, 8, eabm3132.
- 37W. Chen, J. Chen, K. V. Bets, R. V. Salvatierra, K. M. Wyss, G. Gao, C. H. Choi, B. Deng, X. Wang, J. T. Li, C. Kittrell, N. La, L. Eddy, P. Scotland, Y. Cheng, S. Xu, B. Li, M. B. Tomson, Y. Han, B. I. Yakobson, J. M. Tour, Sci. Adv. 2023, 9, eadh5131.
- 38J. Jian, Z. Wang, Y. Qiao, M. Wang, P. Nie, L. Chang, J. Power Sources 2025, 629, 235994.
- 39L. Sun, X. Liu, Y. Feng, X. Ding, J. Wang, N. Jiang, S. Wang, Appl. Catal. B 2023, 338, 122979.
- 40T. Tang, Y. Wang, J. Han, Q. Zhang, X. Bai, X. Niu, Z. Wang, J. Guan, Chin. J. Catal. 2023, 46, 48–55.
- 41T. Tang, X. Bai, Z. Wang, J. Guan, Chem. Sci. 2024, 15, 5082–5112.
- 42L. Yin, M. Sun, S. Zhang, Y. Huang, B. Huang, Y. Du, Adv. Mater. 2024, 37, 2416387.
- 43M. Liu, X. Wang, S. Cao, X. Lu, W. Li, N. Li, X.-H. Bu, Adv. Mater. 2024, 36, 2309231.
- 44G. Yang, M. Fan, Q. Liang, X. He, W. Zhang, T. Asefa, Angew. Chem. Int. Ed. 2025, 64, e202421168.
- 45Z. Zhu, Q. Liu, X. Liu, J. Shui, J. Phys. Chem. C 2020, 124, 3069–3079.
- 46H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479–484.
- 47J. Kim, A. A. Gewirth, J. Phys. Chem. B 2006, 110, 2565–2571.
- 48Z. Weng, L. Liu, Y. Hu, Y. Wei, P. Da, Z. Wu, Z. Mu, P. Xi, C. H. Yan, Adv. Mater. 2023, 36, 2311102.
- 49X. Han, T. Zhang, W. Chen, B. Dong, G. Meng, L. Zheng, C. Yang, X. Sun, Z. Zhuang, D. Wang, A. Han, J. Liu, Adv. Energy Mater. 2021, 11, 2002753.
- 50W. Xu, R. Zeng, M. Rebarchik, A. Posada-Borbón, H. Li, C. J. Pollock, M. Mavrikakis, H. D. Abruña, J. Am. Chem. Soc. 2024, 146, 2593–2603.
- 51X. Zhao, H. Cheng, X. Chen, Q. Zhang, C. Li, J. Xie, N. Marinkovic, L. Ma, J.-C. Zheng, K. Sasaki, J. Am. Chem. Soc. 2024, 146, 3010–3022.
- 52Q. Li, D. Zhang, J. Wu, S. Dai, H. Liu, M. Lu, R. Cui, W. Liang, D. Wang, P. Xi, M. Liu, H. Li, L. Huang, Adv. Mater. 2024, 36, 2309266.
- 53X. Liu, Y. Wang, J. Liang, S. Li, S. Zhang, D. Su, Z. Cai, Y. Huang, L. Elbaz, Q. Li, J. Am. Chem. Soc. 2024, 146, 2033–2042.
- 54Y. Zhao, H. C. Chen, X. Ma, J. Li, Q. Yuan, P. Zhang, M. Wang, J. Li, M. Li, S. Wang, H. Guo, R. Hu, K. H. Tu, W. Zhu, X. Li, X. Yang, Y. Pan, Adv. Mater. 2024, 36, 2308243.
- 55S. Ning, M. Li, X. Wang, D. Zhang, B. Zhang, C. Wang, D. Sun, Y. Tang, H. Li, K. Sun, G. Fu, Angew. Chem. Int. Ed. 2023, 62, e202314565.