Three-Dimensional Porphyrin and Phthalocyanine-Based Covalent Organic Frameworks for Boosting Urea Oxidation
Dr. Guanyu Qiao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Bolun Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
International Center of Future Science, Jilin University, Changchun, 130012 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZiyi Zhao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorHongde Yu
Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden, 01069 Germany
Search for more papers by this authorJingyang Lin
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorYunyu Guo
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorJiahuan Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorDr. Lin Li
Electron Microscopy Center, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorThomas Heine
Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden, 01069 Germany
Search for more papers by this authorCorresponding Author
Prof. Donghai Mei
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Enquan Jin
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
International Center of Future Science, Jilin University, Changchun, 130012 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDr. Guanyu Qiao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Bolun Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
International Center of Future Science, Jilin University, Changchun, 130012 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorZiyi Zhao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorHongde Yu
Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden, 01069 Germany
Search for more papers by this authorJingyang Lin
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorYunyu Guo
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorJiahuan Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorDr. Lin Li
Electron Microscopy Center, Jilin University, Changchun, 130012 P.R. China
Search for more papers by this authorThomas Heine
Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden, 01069 Germany
Search for more papers by this authorCorresponding Author
Prof. Donghai Mei
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Enquan Jin
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 P.R. China
International Center of Future Science, Jilin University, Changchun, 130012 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A series of three-dimensional (3D COFs) was developed with a cyt topology, facilitating the uniform dispersion and full exposure of distinct metal sites. The resulting TAPP-OFPc-COFs demonstrate exceptional electrocatalytic performance in urea oxidation. The Fe–Ni bimetallic sites synergistically ensure high efficiency and cycle stability.
Abstract
Porphyrin and phthalocyanine-based covalent organic frameworks (COFs) have emerged as versatile scaffolds for developing high-performance photo- and electrocatalysts. By enabling precise anchoring of metal species onto their cores, these COFs allow for meticulous tuning of chemical and electronic properties, facilitating single-atom distribution and achieving outstanding catalytic performance. However, the majority of these COFs are restricted to two-dimensional (2D) architectures, where the catalytic activity of the metal centers is often compromised due to eclipsed stacking layers, limiting their optimization potential. To address this challenge, we report the synthesis of three-dimensional (3D) porphyrin and phthalocyanine-based COFs with a cyt topology. This innovative structural arrangement facilitates the atomic-level distribution of distinct metal species across steric exposed networks, and the synergistic effect of bimetallic sites leads to exceptional electrocatalytic activity in urea oxidation reactions with a current density of 10 mA cm−2 at just 1.37 VRHE. This study not only broadens the topological diversity of 3D COFs but also establishes a platform for achieving uniform and accessible multimetal distributions, paving the way for synergistic electrocatalytic materials.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202508783-sup-0001-SuppMat.docx106 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. S. Diercks, O. M. Yaghi, Science 2017, 355, eaal1585.
- 2R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, D. Jiang, Chem. Soc. Rev. 2021, 50, 120–242.
- 3K. T. Tan, S. Ghosh, Z. Wang, F. Wen, D. Rodríguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. Feng, A. Thomas, D. Jiang, Nat. Rev. Methods Primers 2023, 3, 1.
- 4S. Li, S. Xu, E. Lin, T. Wang, H. Yang, J. Han, Y. Zhao, Q. Xue, P. Samorì, Z. Zhang, T. Zhang, Nat. Chem. 2025, 17, 226–232.
- 5Y. Yin, Y. Zhang, X. Zhou, B. Gui, W. Wang, W. Jiang, Y.-B. Zhang, J. Sun, C. Wang, Science 2024, 386, 693–696.
- 6Z. Zhang, C. Kang, S. B. Peh, D. Shi, F. Yang, Q. Liu, D. Zhao, J. Am. Chem. Soc. 2022, 144, 14992–14996.
- 7J. Guo, D. Jiang, ACS Cent. Sci. 2020, 6, 869–879.
- 8Y.-Z. Cheng, D.-H. Yang, W. Ji, P.-Y. Hao, P. Ma, J. Wang, J. Niu, X. Ding, L. Zhang, B.-H. Han, J. Am. Chem. Soc. 2024, 146, 22959–22969.
- 9H. Zhang, Y. Geng, J. Huang, Z. Wang, K. Du, H. Li, Energy Environ. Sci. 2023, 16, 889–951.
- 10Y. Yang, S. Wang, Y. Duan, T. Wang, F. Wang, H. Zhu, Z. Wang, K. Zhang, P. Cheng, Z. Zhang, Angew. Chem. Int. Ed. 2025, 64, e202418394.
- 11X. Pang, B. Shi, Y. Liu, H. Wu, J. Shen, J. Guan, X. Wang, C. Fan, L. Cao,T. Zhu, Y. Kong, Z. Jiang, Angew. Chem. Int. Ed. 2025, 64, e202423458.
- 12J. Lv, Y.-X. Tan, J. Xie, R. Yang, M. Yu, S. Sun, M.-D. Li, D. Yuan, Y. Wang, Angew. Chem. Int. Ed. 2018, 57, 12716–12720.
- 13B. Cui, G. Fu, Nanoscale 2022, 14, 1679–1699.
- 14T. Skorjanc, D. Shetty, M. Valant, ACS Sens. 2021, 6, 1461–1481.
- 15X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen, Chem. Soc. Rev. 2019, 48, 5266–5302.
- 16W. Ji, T.-X. Wang, X. Ding, S. Lei, B.-H. Han, Coord. Chem. Rev. 2021, 439, 213875.
- 17B. Han, Y. Jin, B. Chen, W. Zhou, B. Yu, C. Wei, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202114244.
- 18Q. Zhi, W. Liu, R. Jiang, X. Zhan, Y. Jin, X. Chen, X. Yang, K. Wang, W. Cao, D. Qi, J. Jiang, J. Am. Chem. Soc. 2022, 144, 21328–21336.
- 19J. Yuan, S. Chen, Y. Zhang, R. Li, J. Zhang, T. Peng, Adv. Mater. 2022, 34, 2203139.
- 20T. Xie, S. Chen, Y. Yue, T. Sheng, N. Huang, Y. Xiong, Angew. Chem. Int. Ed. 2024, 63, e202411188.
- 21J. Liu, D. W. Kang, Y. Fan, G. T. Nash, X. Jiang, R. R. Weichselbaum, W. Lin, J. Am. Chem. Soc. 2024, 146, 849–857.
- 22S. Bhunia, A. Peña-Duarte, H. Li, H. Li, M. F. Sanad, P. Saha, M. A. Addicoat, K. Sasaki, T. A. Strom, M. J. Yacamán, C. R. Cabrera, R. Seshadri, S. Bhattacharya, J.-L. Brédas, L. Echegoyen, ACS Nano 2023, 17, 3492–3505.
- 23B. Han, X. Ding, B. Yu, H. Wu, W. Zhou, W. Liu, C. Wei, B. Chen, D. Qi, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, J. Am. Chem. Soc. 2021, 143, 7104–7113.
- 24X. Tian, X. Huang, J.-W. Shi, J. Zhou, C. Guo, R. Wang, Y.-R. Wang, M. Lu, Q. Li, Y. Chen, S.-L. Li, Y.-Q. Lan, CCS Chem 2023, 5, 2557–2566.
- 25X.-F. Qiu, J.-R. Huang, C. Yu, Z.-H. Zhao, H.-L. Zhu, Z. Ke, P.-Q. Liao, X.-M. Chen, Angew. Chem. Int. Ed. 2022, 61, e202206470.
- 26M. Zhang, J.-P. Liao, R.-H. Li, S.-N. Sun, M. Lu, L.-Z. Dong, P. Huang, S.-L. Li, Y.-P. Cai, Y.-Q. Lan, Nat. Sci. Rev. 2023, 10, nwad226.
- 27X.-Y. Dong, F.-Q. Yan, Q.-Y. Wang, P.-F. Feng, R.-Y. Zou, S. Wang, S.-Q. Zang, J. Mater. Chem. A 2023, 11, 15732–15738.
- 28J. Ding, X. Guan, J. Lv, X. Chen, Y. Zhang, H. Li, D. Zhang, S. Qiu, H.-L. Jiang, Q. Fang, J. Am. Chem. Soc. 2023, 145, 3248–3254.
- 29Y. Qian, H.-L. Jiang, Acc. Chem. Res. 2024, 57, 1214–1226.
- 30H. Wu, L. Li, H. Chen, Y. Xing, Z. Wang, C. Zhang, X. Long, Angew. Chem. Int. Ed. 2024, 63, e202410719.
- 31S.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao, J. Hu, H.-B. Shu, M. Jaroniec, P. Chen, Q.-H. Liu, S.-Z. Qiao, Nat. Energy 2021, 6, 904–912.
- 32X. Gao, X. Bai, P. Wang, Y. Jiao, K. Davey, Y. Zheng, S.-Z. Qiao, Nat. Commun. 2023, 14, 5842.
- 33S. Xu, X. Ruan, M. Ganesan, J. Wu, S. K. Ravi, X. Cui, Adv. Funct. Mater. 2024, 34, 2313309.
- 34P. Wang, X. Gao, M. Zheng, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Nat. Commun. 2025, 16, 2424.
- 35W. Chen, L. Xu, X. Zhu, Y. C. Huang, W. Zhou, D. Wang, Y. Zhou, S. Du, Q. Li, C. Xie, L. Tao, C.-L. Dong, J. Liu, Y. Wang, R. Chen, H. Su, C. Chen,Y. Zou, Y. Li, Q. Liu, S. Wang, Angew. Chem. Int. Ed. 2021, 60, 7297–7307.
- 36X. Gao, S. Zhang, P. Wang, M. Jaroniec, Y. Zheng, S.-Z. Qiao, Chem. Soc. Rev. 2024, 53, 1552–1591.
- 37X. Zheng, J. Yang, P. Li, Z. Jiang, P. Zhu, Q. Wang, J. Wu, E. Zhang, W. Sun, S. Dou, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202217449.
- 38J. Tang, Z. Li, H. Jang, X. Gu, C. Sun, M. G. Kim, L. Hou, X. Liu, Adv. Energy Mater. 2024, 14, 2403004.
- 39B. Zhu, Z. Liang, R. Zou, Small 2020, 16, 1906133.
- 40X. Qiang, Y. Yao, J. Yin, P. Da, Z. Mu, K. Shen, Y. Sun, Y. Zhang, P. Li, Z. Li, P. Xi, C.-H. Yan, Angew. Chem. Int. Ed. 2025, e202424014.
- 41S. Akkari, C. M. Sánchez-Sánchez, G. Hopsort, K. G. Serrano, K. Loubière, T. Tzedakis, R. Benyahia, L. Rebiai, S. Bastide, C. Cachet-Vivier, V. Vivier, M. Lopez-Viveros, Appl. Catal. B: Environ. 2024, 124718.