Ultralong-Cycling Lithium Storage of SrGe2O4S Anode Enabled by In Situ Formed Oxysulfide Matrix
A.P. Chenlong Dong
Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P.R. China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
A.P. Ruiqi Wang
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408 P.R. China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Both authors contributed equally to this work.
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuanxia Zhang
Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P.R. China
Search for more papers by this authorDr. Qiang Fu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Search for more papers by this authorDr. Siwei Zhao
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Search for more papers by this authorA.P. Guobao Li
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhiyong Mao
Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Fuqiang Huang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot, 010010 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorA.P. Chenlong Dong
Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P.R. China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
A.P. Ruiqi Wang
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 101408 P.R. China
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Both authors contributed equally to this work.
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuanxia Zhang
Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P.R. China
Search for more papers by this authorDr. Qiang Fu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Search for more papers by this authorDr. Siwei Zhao
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Search for more papers by this authorA.P. Guobao Li
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhiyong Mao
Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Fuqiang Huang
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P.R. China
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot, 010010 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
High-energy lithium-ion batteries (LIBs) demand next-generation alloying-type anodes with high capacity and low voltage. While silicon-based anodes are in industrial use, commercial alloying-type anodes still suffer from excessive volume expansion and inadequate cycle life. Even incorporating silicon-carbon composites within graphite (typically <20% in commercial products) fails to resolve these limitations. Herein, we report a novel SrGe2O4S anode for ultralong-cycling lithium storage. An oxysulfide matrix (Li₂O/SrS) was in situ formed around Ge nanodomains. Enabled by the strong covalency of soft S2⁻ anions and the pinning effect of large Sr2⁺ ions, this synergistic matrix has demonstrated capabilities to enhance interfacial compatibility with Ge, facilitate efficient Li⁺ transport, suppress agglomeration of Ge nanoparticles and buffer volume expansion, as evidenced by in/ex situ characterizations, density functional theory calculations, and finite element analysis simulations. The anode harvests a low charging medium voltage of 0.42 V and reversible capacity of 587 mA h g−1 at 0.1 A g−1 after 800 cycles (8300 h) with 93.2% capacity retention. The LiCoO2||SrGe2O4S full cell delivers a high capacity of 142 mA h g−1 and energy density of 482 Wh kg−1. This work sheds light on constructing functional matrix to relieve volume expansion and particle agglomeration of high-capacity ultralong-cycling alloying-type anodes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202508673-sup-0001-SupMat.docx22.9 MB | Supporting Information |
anie202508673-sup-0002-SupMat.cif112.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 2J. Xu, X. Cai, S. Cai, Y. Shao, C. Hu, S. Lu, S. Ding, Energy Environ. Mater. 2023, 6, e12450.
- 3H. Zhao, J. Li, Q. Zhao, X. Huang, S. Jia, J. Ma, Y. Ren, Electrochem. Energy Rev. 2024, 7, 11.
- 4E. Feyzi, A. K. MR, X. Li, S. Deng, J. Nanda, K. Zaghib, Next Energy 2024, 5, 100176.
- 5Y. Luo, Y. Chen, N. Koratkar, W. Liu, Adv. Sci. 2024, 11, 2403530.
- 6M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Adv. Mater. 2013, 25, 4966–4985.
- 7X. Wang, S. Tang, W. Guo, Y. Fu, A. Manthiram, Mater. Today 2021, 50, 259–275.
- 8S. Liang, Y.-J. Cheng, J. Zhu, Y. Xia, P. Müller-Buschbaum, Small Methods 2020, 4, 2000218.
- 9X. Liu, X.-Y. Wu, B. Chang, K.-X. Wang, Energy Storage Mater. 2020, 30, 146–169.
- 10D. Li, H. Wang, T. Zhou, W. Zhang, H. K. Liu, Z. Guo, Adv. Energy Mater. 2017, 7, 1700488.
- 11D. Wei, S. Zeng, H. Li, X. Li, J. Liang, Y. Qian, Electrochim. Acta 2017, 253, 522–529.
- 12D.-H. Kim, C.-M. Park, Mater. Today Energy 2020, 18, 100530.
- 13Q. Hao, Q. Liu, Y. Zhang, C. Xu, J. Hou, J. Colloid Interf. Sci. 2019, 539, 665–671.
- 14Y. J. Cho, C. H. Kim, H. S. Im, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, S. H. Lim, E. H. Cha, K. Y. Bae, M. S. Song, W. I. Cho, Phys. Chem. Chem. Phys. 2013, 15, 11691.
- 15P. Zhu, Y. Zu, Y. Kuai, S. Gao, G. Wu, W. Chen, L. Wu, C. Chen, G. Liu, Phys. Chem. Chem. Phys. 2021, 23, 26428–26437.
- 16Y. Liu, S. Zhang, T. Zhu, ChemElectroChem 2014, 1, 706–713.
- 17B. Farbod, K. Cui, W. P. Kalisvaart, M. Kupsta, B. Zahiri, A. Kohandehghan, E. M. Lotfabad, Z. Li, E. J. Luber, D. Mitlin, ACS Nano 2014, 8, 4415–4429.
- 18Y. Kim, H. Hwang, K. Lawler, S. W. Martin, J. Cho, Electrochim. Acta 2008, 53, 5058–5064.
- 19W. Li, Y.-X. Yin, S. Xin, W.-G. Song, Y.-G. Guo, Energy Environ. Sci. 2012, 5, 8007.
- 20W. Li, X. Wang, B. Liu, J. Xu, B. Liang, T. Luo, S. Luo, D. Chen, G. Shen, Nanoscale 2013, 5, 10291.
- 21M. Ye, X. H. Hao, J. Zeng, L. Li, P. Wang, C. Zhang, L. Liu, F.-N. Shi, Y. Wu, J. Semicond. 2024, 45, 021701–021701.
- 22M. Li, J. Lu, X. Ji, Y. Li, Y. Shao, Z. Chen, C. Zhong, K. Amine, Nat. Rev. Mater. 2020, 5, 276–294.
- 23A. Hayashi, M. Tatsumisago, in Encyclopedia of Glass Science, Technology, History, and Culture 2021, pp. 1125–1134.
10.1002/9781118801017.ch9.5 Google Scholar
- 24J. Liang, N. Chen, X. Li, X. Li, K. R. Adair, J. Li, C. Wang, C. Yu, M. Norouzi Banis, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Huang, X. Sun, Chem. Mater. 2020, 32, 2664–2672.
- 25Deposition number 2321783 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 26Z. Yu, Z. Zhang, H. Jiang, J. Zhao, S. Yang, J. Electrostat. 2014, 72, 353–356.
- 27S. Bräuchle, C. Hejny, H. Huppertz, Z. Naturforsch. B 2016, 71, 1225–1232.
- 28M. Micoulaut, L. Cormier, G. S. Henderson, J. Phys. Condens. Matter 2006, 18, R753–R784.
- 29Q. Wang, S.-Z. Kang, X. Li, Y.-W. Yang, L. Qin, J. Mu, J. Alloy. Compd. 2015, 631, 21–25.
- 30Q.-Q. Ye, Z.-K. Wang, I. Femi, K.-L. Wang, Y. Zhang, X.-J. Ma, M.-P. Zhuo, L.-S. Liao, J. Mater. Chem. A 2019, 7, 14559–14564.
- 31B. Psiuk, J. Szade, K. Szot, Vacuum 2016, 131, 14–21.
- 32H. Chen, C. Keiser, S. Du, H.-J. Gao, P. Sutter, E. Sutter, Phys. Chem. Chem. Phys. 2017, 19, 32473–32480.
- 33P. R. Abel, K. C. Klavetter, K. Jarvis, A. Heller, C. B. Mullins, J. Mater. Chem. A 2014, 2, 19011–19018.
- 34K. Hu, G. Lv, J. Zhang, X. Guo, Z. Wu, W. Xiang, X. Lan, K. Zhou, P. Xu, L. Zhang, ACS Appl. Mater. Inter. 2020, 12, 42660–42668.
- 35Y. Wang, S. Luo, M. Chen, L. Wu, Adv. Funct. Mater. 2020, 30, 2000373.
- 36S. Zhang, Y. Zheng, X. Huang, J. Hong, B. Cao, J. Hao, Q. Fan, T. Zhou, Z. Guo, Adv. Energy Mater. 2019, 9, 1900081.
- 37J. Guo, Z. Jia, J. Power Sources 2021, 486, 229371.
- 38M. Salah, C. Hall, C. Francis, G. Rollo-Walker, M. Fabretto, J. Power Sources 2022, 520, 230871.
- 39M. K. Jangid, A. Mukhopadhyay, J. Mater. Chem. A 2019, 7, 23679–23726.
- 40J. Hou, S. Qu, M. Yang, J. Zhang, J. Power Sources 2020, 450, 227697.
- 41J. Shi, L. Zu, H. Gao, G. Hu, Q. Zhang, Adv. Funct. Mater. 2020, 30, 2002980.
- 42T. Wang, D. Legut, Y. Fan, J. Qin, X. Li, Q. Zhang, Nano Lett. 2020, 20, 6199–6205.