Origin of Anion-Rich Solvation Structures in Siloxane Electrolytes
Yao-Peng Chen
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYi-Lin Niu
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Zhao Zheng
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Dr. Xiang Chen
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYu-Chen Gao
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorNan Yao
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Rui Zhang
Beijing Huairou Laboratory, Beijing, 101400 China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYao-Peng Chen
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYi-Lin Niu
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Zhao Zheng
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Dr. Xiang Chen
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYu-Chen Gao
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorNan Yao
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Rui Zhang
Beijing Huairou Laboratory, Beijing, 101400 China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Complex Solid State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
High-voltage lithium (Li) metal batteries (LMBs) are promising next-generation high-energy-density rechargeable batteries. Siloxane electrolytes exhibit excellent performance in high-voltage LMBs. Herein, the mechanisms responsible for the Li metal compatibility and high-voltage resistance of siloxane electrolytes were probed by classical molecular dynamics (MD) simulations, first-principles calculations, and experimental characterizations. Siloxane electrolytes have been demonstrated to deliver anion-rich solvation structures, which are induced by weak Li ion (Li+)–solvent interactions and strong Li+–anion interactions. The silicon (Si)─oxygen (O) bond energy of siloxane is larger than that of carbon (C)─O of C-siloxane (replacing Si atoms in siloxane with C atoms) because the atomic radius of Si is larger than that of C, and the Pauli exclusion of Si is smaller than that of C. Additionally, ab initio molecular dynamics (AIMD) simulations revealed that the decomposition of siloxane produces substances containing Si─O fragments on Li metal surfaces, which is beneficial for interfacial stability. This work reveals the mechanism of interfacial stability and intrinsic stability of siloxane electrolytes, providing a theoretical basis for the practical application of siloxane electrolytes in high-voltage LMBs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202508152-Sup-0001-SuppMat.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 2M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433–11456.
- 3R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267–278.
- 4Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, W. Chen, Chem. Rev. 2022, 122, 16610–16751.
- 5X. Zeng, M. Li, D. A. El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu, K. Amine, Adv. Energy Mater. 2019, 9, 1900161.
- 6Y. Wu, L. Xie, H. Ming, Y. Guo, J.-Y. Hwang, W. Wang, X. He, L. Wang, H. N. Alshareef, Y.-K. Sun, J. Ming, ACS Energy Lett. 2020, 5, 807–816.
- 7H. Du, X. Zhang, H. Yu, eTransportation 2025, 23, 100382.
- 8V. Viswanathan, A. H. Epstein, Y.-M. Chiang, E. Takeuchi, M. Bradley, J. Langford, M. Winter, Nature 2022, 601, 519–525.
- 9X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473.
- 10D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194–206.
- 11Y. Jie, S. Wang, S. Weng, Y. Liu, M. Yang, C. Tang, X. Li, Z. Zhang, Y. Zhang, Y. Chen, F. Huang, Y. Xu, W. Li, Y. Guo, Z. He, X. Ren, Y. Lu, K. Yang, S. Cao, H. Lin, R. Cao, P. Yan, T. Cheng, X. Wang, S. Jiao, D. Xu, Nat. Energy 2024, 9, 987–998.
- 12R. Qiao, Y. Zhao, S. Zhou, H. Zhang, F. Liu, T. Zhou, B. Sun, H. Fan, C. Li, Y. Zhang, F. Liu, X. Ding, J. W. Choi, A. Coskun, J. Song, Chem 2025, 11, 102306.
- 13S. Zhang, R. Li, T. Deng, Q. Ma, X. Hong, H. Zhang, R. Zhang, S. Ding, Y. Wu, H. Zhu, M. Li, H. Zhang, D. Lu, B. Ma, L. Lv, Y. Li, L. Chen, Y. Shen, R. Guo, X. Fan, Nat. Energy 2024, 9, 1285–1296.
- 14T. Tang, C. Sun, Y. Li, M. Tong, J. Lu, C. Lai, Angew. Chem. Int. Ed. 2025, 64, e202417471.
- 15H. Zhang, Z. Zeng, S. Cheng, J. Xie, eScience 2024, 4, 100265.
- 16X. Zhou, F. Hong, S. Wang, T. Zhao, J. Peng, B. Zhang, W. Fan, W. Xing, M. Zuo, P. Zhang, Y. Zhou, G. Lv, Y. Zhong, W. Hua, W. Xiang, eScience 2024, 4, 100276.
- 17X. Fan, C. Wang, Chem. Soc. Rev. 2021, 50, 10486–10566.
- 18J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng, L. Yuan, H. Xu, Y. Huang, Adv. Mater. 2022, 34, 2200912.
- 19Y. Chen, Z. Ma, Y. Wang, P. Kumar, F. Zhao, T. Cai, Z. Cao, L. Cavallo, H. Cheng, Q. Li, J. Ming, Energy Environ. Sci. 2024, 17, 5613–5626.
- 20X. Chen, Q. Zhang, Acc. Chem. Res. 2020, 53, 1992–2002.
- 21G. A. Giffin, Nat. Commun. 2022, 13, 5250.
- 22H. Wang, Z. Yu, X. Kong, S. C. Kim, D. T. Boyle, J. Qin, Z. Bao, Y. Cui, Joule 2022, 6, 588–616.
- 23Z. Zhao, A. Wang, A. Chen, Y. Zhao, Z. Hu, K. Wu, J. Luo, Angew. Chem. Int. Ed. 2024, 63, e202412239.
- 24P. Xiao, X. Yun, Y. Chen, X. Guo, P. Gao, G. Zhou, C. Zheng, Chem. Soc. Rev. 2023, 52, 5255–5316.
- 25Y. S. Meng, V. Srinivasan, K. Xu, Science 2022, 378, eabq3750.
- 26J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang, Y. Huang, H. Ma, J. Wang, eScience 2023, 3, 100135.
- 27X. Min, L. Wang, Y. Wu, Z. Zhang, H. Xu, X. He, J. Energy Chem. 2025, 106, 63–70.
- 28S.-Y. Sun, X.-Q. Zhang, X.-Y. Yan, Z. Zheng, Q.-K. Zhang, J.-Q. Huang, EES Batteries 2025, 1, 340–363.
10.1039/D4EB00034J Google Scholar
- 29H. Wang, H. Wang, EES Batteries 2025, 1, 217–226.
10.1039/D4EB00042K Google Scholar
- 30Y. X. Yao, X. Chen, C. Yan, X. Q. Zhang, W. L. Cai, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4090–4097.
- 31H. Ma, Q. Wang, H. Lu, Y. Si, X. Kong, J. Wang, Chem. Eng. J. 2024, 479, 147557.
- 32Y.-X. Yao, L. Xu, C. Yan, Q. Zhang, EES Batteries 2025, 1, 9–22.
10.1039/D4EB00011K Google Scholar
- 33R. Xu, A. Hu, Z. Wang, K. Chen, J. Chen, W. Xu, G. Wu, F. Li, J. Wang, J. Long, J. Energy Chem. 2025, 105, 35–43.
- 34Y. Wang, Y. Li, C. Li, Y. Guo, L. Yu, X. Li, T. Li, J. Energy Chem. 2025, 106, 681–687.
- 35B. Ma, H. Zhang, R. Li, S. Zhang, L. Chen, T. Zhou, J. Wang, R. Zhang, S. Ding, X. Xiao, T. Deng, L. Chen, X. Fan, Nat. Chem. 2024, 16, 1427–1435.
- 36H. Zhang, R. Li, L. Chen, Y. Fan, H. Zhang, R. Zhang, L. Zheng, J. Zhang, S. Ding, Y. Wu, B. Ma, S. Zhang, T. Deng, L. Chen, Y. Shen, X. Fan, Angew. Chem. Int. Ed. 2023, 62, e202218970.
- 37Y. Wang, Y. Ni, S. Xu, Y. Lu, L. Shang, Z. Yang, K. Zhang, Z. Yan, W. Xie, J. Chen, J. Am. Chem. Soc. 2025, 147, 10772–10783.
- 38Z. Li, H. Rao, R. Atwi, B. M. Sivakumar, B. Gwalani, S. Gray, K. S. Han, T. A. Everett, T. A. Ajantiwalay, V. Murugesan, N. N. Rajput, V. G. Pol, Nat. Commun. 2023, 14, 868.
- 39Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526–533.
- 40Z. Yu, P. E. Rudnicki, Z. Zhang, Z. Huang, H. Celik, S. T. Oyakhire, Y. Chen, X. Kong, S. C. Kim, X. Xiao, H. Wang, Y. Zheng, G. A. Kamat, M. S. Kim, S. F. Bent, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2022, 7, 94–106.
- 41I. R. Choi, Y. Chen, A. Shah, J. Florian, C. Serrao, J. Holoubek, H. Lyu, E. Zhang, J. H. Lee, Y. Lin, S. C. Kim, H. Park, P. Zhang, J. Lee, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2025, 10, 365–379.
- 42Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu, D. Lu, C. Sun, X. Huang, T. Deng, L. Fan, L. Chen, X. Wang, X. Fan, Energy Environ. Sci. 2022, 15, 4349–4361.
- 43A.-M. Li, O. Borodin, T. P. Pollard, W. Zhang, N. Zhang, S. Tan, F. Chen, C. Jayawardana, B. L. Lucht, E. Hu, X.-Q. Yang, C. Wang, Nat. Chem. 2024, 16, 922–929.
- 44X. Chen, X. Q. Zhang, H. R. Li, Q. Zhang, Batteries Supercaps 2019, 2, 128–131.
- 45Y.-C. Gao, N. Yao, X. Chen, L. Yu, R. Zhang, Q. Zhang, J. Am. Chem. Soc. 2023, 145, 23764–23770.
- 46X. Chen, H.-R. Li, X. Shen, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16643–16647.
- 47Y. Yang, J. Lu, W. Ni, D. Peng, W. Chen, Y. Fu, J. Wang, Adv. Funct. Mater. 2025, 35, 2508056.
- 48T. Lu, Q. Chen, J. Phys. Chem. A 2023, 127, 7023–7035.
- 49M. Li, H. Chen, Y. Wang, X. Chen, J. Wu, J. Su, M. Wang, X. Li, C. Li, L. Ma, X. Li, Y. Chen, J. Mater. Chem. A 2023, 11, 11721–11729.
- 50Y. Wang, J. Liu, H. Ji, S. Wang, M. Wang, X. Zhou, T. Qian, Y. Zheng, C. Yan, Adv. Mater. 2025, 37, 2412155.
- 51X. Yin, B. Li, H. Liu, B. Wen, J. Liu, M. Bai, Y. Zhang, Y. Zhao, X. Cui, Y. Su, G. Gao, S. Ding, W. Yu, Joule 2025, 9, 101823.