One-Dimensional Covalent Organic Frameworks: From Design, Synthesis to Applications
Pei Huang
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorLu-Hua Hou
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorMing-Yi Yang
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorCheng Xiao
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorYan-Li Wu
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorSi-Jing Cai
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorWen-Jie Guo
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Mi Zhang
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dr. Meng Lu
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorPei Huang
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorLu-Hua Hou
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorMing-Yi Yang
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorCheng Xiao
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorYan-Li Wu
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorSi-Jing Cai
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorWen-Jie Guo
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Mi Zhang
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dr. Meng Lu
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Ya-Qian Lan
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
As an important branch of the covalent organic frameworks (COFs) family, one-dimensional COFs (1D COFs), which are formed by the ordered arrangement of confined covalent bonds in one dimension and non-covalent interactions (van der Waals force, π–π interactions, and hydrogen bonds) in the vertical two and three dimensions has aroused much attention. Compared with two-dimensional (2D)/three-dimensional (3D) COFs, 1D COFs behaved more easily dispersing and had more opportunities for active sites exposure due to their weaker interchain/interlayer interaction, modified nonlinear edge, and pore structures. These features make them have great application potential in many fields, including catalysis, energy storage, adsorption, sensing, and others. In this minireview, we highlight the state-of-the-art advances of 1D COFs in the structure design principles of building blocks, synthesis strategies, and their related applications. Furthermore, we present an in-depth outlook on the challenges and opportunities faced by 1D COFs, aiming to offer insights for future studies in this intriguing and significant research field.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166–1170.
- 2Z. Zhou, T. Ma, H. Zhang, S. Chheda, H. Li, K. Wang, S. Ehrling, R. Giovine, C. Li, A. H. Alawadhi, M. M. Abduljawad, M. O. Alawad, L. Gagliardi, J. Sauer, O. M. Yaghi, Nature 2024, 635, 96–101.
- 3H. Li, J. Ding, X. Guan, F. Chen, C. Li, L. Zhu, M. Xue, D. Yuan, V. Valtchev, Y. Yan, S. Qiu, Q. Fang, J. Am. Chem. Soc. 2020, 142, 13334–13338.
- 4R. Liu, Y. Chen, H. Yu, M. Položij, Y. Guo, T. C. Sum, T. Heine, D. Jiang, Nat. Catal. 2024, 7, 195–206.
- 5M. Lu, M. Zhang, J. Liu, T.-Y. Yu, J.-N. Chang, L.-J. Shang, S.-L. Li, Y.-Q. Lan, J. Am. Chem. Soc. 2022, 144, 1861–1871.
- 6M. Liu, Y. J. Chen, X. Huang, L. Z. Dong, M. Lu, C. Guo, D. Yuan, Y. Chen, G. Xu, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2022, 61, e202115308.
- 7S. Wang, Y. Fu, F. Wang, X. Wang, Y. Yang, M. Wang, J. Wang, E. Lin, H. Ma, Y. Chen, P. Cheng, Z. Zhang, J. Am. Chem. Soc. 2024, 146, 33509–33517.
- 8J. Yang, H. Xu, J. Li, K. Gong, F. Yue, X. Han, K. Wu, P. Shao, Q. Fu, Y. Zhu, W. Xu, X. Huang, J. Xie, F. Wang, W. Yang, T. Zhang, Z. Xu, X. Feng, B. Wang, Science 2024, 385, 1115–1120.
- 9Y. Xu, P. Cai, K. Chen, Q. Chen, Z. Wen, L. Chen, Angew. Chem. Int. Ed. 2023, 62, e202215584.
- 10Z.-C. Zhang, P.-L. Wang, Y.-F. Sun, T. Yang, S.-Y. Ding, W. Wang, J. Am. Chem. Soc. 2024, 146, 4822–4829.
- 11L. Zhang, A. Song, Q.-C. Yang, S.-J. Li, S. Wang, S.-C. Wan, J. Sun, R. T. K. Kwok, J. W. Y. Lam, H. Deng, B. Z. Tang, Z.-J. Sun, Nat. Commun. 2023, 14, 5355.
- 12R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, D. Jiang, Chem. Soc. Rev. 2021, 50, 120–242.
- 13K. Koner, S. Karak, S. Kandambeth, S. Karak, N. Thomas, L. Leanza, C. Perego, L. Pesce, R. Capelli, M. Moun, M. Bhakar, T. G. Ajithkumar, G. M. Pavan, R. Banerjee, Nat. Chem. 2022, 14, 507–514.
- 14J. Dong, X. Han, Y. Liu, H. Li, Y. Cui, Angew. Chem. Int. Ed. 2020, 59, 13722–13733.
- 15X. Guan, F. Chen, S. Qiu, Q. Fang, Angew. Chem. Int. Ed. 2023, 62, e202213203.
- 16M. Liu, Q. Xu, G. Zeng, Angew. Chem. Int. Ed. 2024, 63, e202404886.
- 17B. Gui, G. Lin, H. Ding, C. Gao, A. Mal, C. Wang, Accounts Chem. Res. 2020, 53, 2225–2234.
- 18Y. Chang, C. Lin, H. Wang, X. Wu, L. Zou, J. Shi, Q. Xiao, Q. Xu, X. Li, W. Luo, Angew. Chem. Int. Ed. 2025, 64, e202414075.
- 19P. K. Zhou, Y. Li, T. Zeng, M. Y. Chee, Y. Huang, Z. Yu, H. Yu, H. Yu, W. Huang, X. Chen, Angew. Chem. Int. Ed. 2024, 63, e202402911.
- 20Y. Z. Cheng, X. Bao, D. Jiang, W. Ji, D. H. Yang, X. Ding, X. Liu, Y. He, B. H. Han, Angew. Chem. Int. Ed. 2025, 64, e202414943.
- 21C. Jia, A. Duan, C. Liu, W. Z. Wang, S. X. Gan, Q. Y. Qi, Y. Li, X. Huang, X. Zhao, Small 2023, 19, 2300518.
- 22S. Yang, Z. He, X. Li, B. Mei, Y. Huang, Q. Xu, Z. Jiang, Angew. Chem. Int. Ed. 2024, 64, e202418347.
- 23Y. Hu, S. J. Teat, W. Gong, Z. Zhou, Y. Jin, H. Chen, J. Wu, Y. Cui, T. Jiang, X. Cheng, W. Zhang, Nat. Chem. 2021, 13, 660–665.
- 24Z. Chen, K. Wang, Y. Tang, L. Li, X. Hu, M. Han, Z. Guo, H. Zhan, B. Chen, Angew. Chem. Int. Ed. 2023, 62, e202213268.
- 25E. De Bolòs, M. Martínez-Abadía, F. Hernández-Culebras, A. Haymaker, K. Swain, K. Strutyński, B. L. Weare, J. Castells-Gil, N. M. Padial, C. Martí-Gastaldo, A. N. Khlobystov, A. Saeki, M. Melle-Franco, B. L. Nannenga, A. Mateo-Alonso, J. Am. Chem. Soc. 2022, 144, 15443–15450.
- 26C. Yang, J. Le, Y. Kuang, Z. Meng, H. Dai, Y. Zhou, H. Qiu, J. Am. Chem. Soc. 2024, 146, 26198–26206.
- 27M. Li, B. Han, L. Gong, Y. Jin, M. Wang, X. Ding, D. Qi, J. Jiang, Chin. Chem. Lett. 2024, 110590, https://doi.org/10.1016/j.cclet.2024.110590.
- 28C. Cheng, Y. Liu, G. Sheng, X. Jiang, X. Kang, C. Jiang, Y. Liu, Y. Zhu, Y. Cui, Angew. Chem. Int. Ed. 2024, 63, e202403473.
- 29H.-S. Xu, Y. Luo, X. Li, P. Z. See, Z. Chen, T. Ma, L. Liang, K. Leng, I. Abdelwahab, L. Wang, R. Li, X. Shi, Y. Zhou, X. F. Lu, X. Zhao, C. Liu, J. Sun, K. P. Loh, Nat. Commun. 2020, 11, 1434.
- 30H. L. Nguyen, C. Gropp, O. M. Yaghi, J. Am. Chem. Soc. 2020, 142, 2771–2776.
- 31H. Yang, J. Wang, R. Zhao, L. Hou, Small 2024, 20, 2400688.
- 32L. Song, W. Gao, S. Jiang, Y. Yang, W. Chu, X. Cao, B. Sun, L. Cui, C.-y. Zhang, Nano Lett. 2024, 24, 6312–6319.
- 33J. He, L. Yuan, S. Gu, J. Bai, Y. Li, S. Wang, D. Li, H. Liu, J. Mater. Chem. A 2024, 12, 24380–24390.
- 34C. Liu, D.-L. Ma, P.-J. Tian, C. Jia, Q.-Y. Qi, G.-F. Jiang, X. Zhao, J. Mater. Chem. A 2024, 12, 16063–16069.
- 35Y. Liu, W.-K. Han, W. Chi, J.-X. Fu, Y. Mao, X. Yan, J.-X. Shao, Y. Jiang, Z.-G. Gu, Appl. Catal. B-Environ. 2023, 338, 123074.
- 36S. K. Xia, Y. Liu, R. M. Zhu, J. D. Feng, W. K. Han, Z. G. Gu, Macromol. Rapid Commun. 2025, 46, 2400780.
- 37Z. Zhang, Y. Liu, Y. Qi, Z. Yu, X. b. Chen, C. Li, Z. Shi, S. Feng, Angew. Chem. Int. Ed. 2025, 64, e202501614.
- 38M. Zhang, R. Zheng, Y. Ma, R. Chen, X. Sun, X. Sun, Molecules 2019, 24, 3361.
- 39M. Liu, Y. Fu, S. Bi, S. Yang, X. Yang, X. Li, G. Z. Chen, J. He, Q. Xu, G. Zeng, Chem. Eng. J. 2024, 479, 147682.
- 40J. Wang, H. Sun, S. Huang, F. Duan, H. Gu, M. Du, S. Lu, ACS Appl. Mater. Interfaces 2024, 16, 56459–56468.
- 41H. S. Xu, Y. Luo, P. Z. See, X. Li, Z. Chen, Y. Zhou, X. Zhao, K. Leng, I. H. Park, R. Li, C. Liu, F. Chen, S. Xi, J. Sun, K. P. Loh, Angew. Chem. Int. Ed. 2020, 59, 11527–11532.
- 42Y. Yang, E. Lin, S. Wang, T. Wang, Z. Wang, Z. Zhang, J. Am. Chem. Soc. 2024, 146, 782–790.
- 43L. J. Wayment, X. Wang, S. Huang, M. S. McCoy, H. Chen, Y. Hu, Y. Jin, S. Sharma, W. Zhang, J. Am. Chem. Soc. 2023, 145, 15547–15552.
- 44J. Zhao, M. Xie, X. Chen, J. K. Jin, W. Zhao, J. Luo, G. H. Ning, J. Liu, D. Li, Chem.-Asian J 2023, 18, e202300328.
- 45Y. Gao, W. K. Han, R. M. Zhu, J. X. Fu, J. D. Feng, Z. G. Gu, Small 2024, 20, 2406251.
- 46W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu, X. Zhou, R. Clowes, N. D. Browning, Y. Wu, J. W. Ward, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9902–9909.
- 47P. Li, F. Ge, Y. Yang, T. Wang, X. Zhang, K. Zhang, J. Shen, Angew. Chem. Int. Ed. 2024, 63, e202319885.
- 48S. An, X. Li, S. Shang, T. Xu, S. Yang, C. X. Cui, C. Peng, H. Liu, Q. Xu, Z. Jiang, J. Hu, Angew. Chem. Int. Ed. 2023, 62, e202218742.
- 49L. Zou, Z. A. Chen, D. H. Si, S. L. Yang, W. Q. Gao, K. Wang, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed. 2023, 62, e202309820.
- 50L. Y. Ai, Q. Wang, X. W. Chen, G. F. Jiang, Aggregate 2024, 5, e582.
- 51K. Lin, J. Wang, S. Qiao, Z. Guo, ACS Sustainable Chem. Eng. 2024, 12, 6719–6727.
- 52L. Wang, L. Wang, Q. Zhao, X. Ji, M. Zhao, Y. Zhang, M. Lai, J. Mater. Chem. A 2024, 12, 28424–28436.
- 53J. Li, J. Lan, R. Cao, J. Sun, X. Ding, X. Liu, L. Yuan, W. Shi, ACS Appl. Mater. Interfaces 2023, 15, 59544–59551.
- 54P. Shi, K. Wang, Z. Chen, J. Wang, K. Lin, N. L. Solange, Y. Yue, Z. Guo, CCS Chem. 2024, 6, 941–952.
- 55W. Yao, L. Yao, Z.-E. Wang, X. Song, Z. Liang, Talanta 2025, 286, 127519.
- 56L. Wei, S. Wu, C. Li, C. Liu, H. Chen, Y.-B. Zhang, F. Zheng, Y. Ma, Y. Zhao, J. Am. Chem. Soc. 2024, 146, 31384–31390.
- 57P. Shi, J. Wang, Z. Guo, Chem. Eng. J. 2023, 451, 139082.
- 58X. Shen, B. Yan, J. Mater. Chem. A 2024, 12, 6455–6464.
- 59Z. Chen, K. Wang, X. Hu, P. Shi, Z. Guo, H. Zhan, ACS Appl. Mater. Interfaces 2021, 13, 1145–1151.
- 60X. Yuan, N. Wu, Z. Guo, H. Zhan, Microporous Mesoporous Mat 2023, 355, 112573.
- 61C. Liu, C. Jia, S.-X. Gan, Q.-Y. Qi, G.-F. Jiang, X. Zhao, Chin. Chem. Lett. 2024, 35, 109750.
- 62P.-K. Zhou, Z. Yu, T. Zeng, C. Zhang, Y. Huang, Q. Chen, C. Lin, L. Zhao, X. Chen, Nano Lett. 2025, 25, 5891–5898.