Early View e202505716
Research Article

Engineering PdAu/CeO₂ Alloy/Oxide Interfaces for Selective Methane-to-Methanol Conversion with Water

Dr. Estefanía Fernández-Villanueva

Dr. Estefanía Fernández-Villanueva

Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022 Spain

Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain

Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain

Search for more papers by this author
Dr. Pedro J. Ramírez

Dr. Pedro J. Ramírez

Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Distrito Capital, 1020-A Venezuela

Zoneca-CENEX, R&D Laboratories, Alta Vista, Monterrey, 64770 Mexico

Search for more papers by this author
Dr. Pablo G. Lustemberg

Corresponding Author

Dr. Pablo G. Lustemberg

Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain

E-mail: [email protected]; [email protected]; [email protected]

Search for more papers by this author
Prof. Rubén Pérez

Prof. Rubén Pérez

Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain

Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain

Search for more papers by this author
Prof. M. Verónica Ganduglia-Pirovano

Corresponding Author

Prof. M. Verónica Ganduglia-Pirovano

Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain

E-mail: [email protected]; [email protected]; [email protected]

Search for more papers by this author
Prof. José A. Rodriguez

Corresponding Author

Prof. José A. Rodriguez

Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973 USA

E-mail: [email protected]; [email protected]; [email protected]

Search for more papers by this author
First published: 24 July 2025

Graphical Abstract

Selective methane-to-methanol conversion at 500 K over Pd0.3Au0.7/CeO2. The synergistic interaction between alloyed Pd–Au sites and the CeO2 support enhances catalytic performance, enabling highly selective methane-to-methanol under mild conditions. The reaction of CH4 with H2O produces CH3OH and H2, achieving ∼80% selectivity under mild conditions while maintaining stable long-term activity.

Abstract

The direct conversion of methane-to-methanol remains a critical challenge in methane valorization. In this study, we unveil the crucial role of PdAu/CeO2 catalysts in enabling selective methane transformation under mild conditions, using only water as the sole oxidant. Through a combination of experimental techniques, including XPS and catalytic testing, alongside density functional theory (DFT) calculations, we demonstrate that a Pd0.3Au0.7/CeO2 catalyst, which predominantly exposes isolated Pd atoms, achieves remarkable methanol selectivity (∼80%) at 500 K with a 1:1 methane-to-water ratio. While Pd/CeO2 efficiently activates methane, its tendency for overreaction leads to complete methanol decomposition, thereby limiting selectivity. Alloying Pd with Au on ceria mitigates this over-reactivity, preventing methanol degradation while maintaining sufficient catalytic activity. The PdAu/CeO₂ composite exhibits a synergistic effect: Pd in contact with the ceria support facilitates methane activation and water dissociation, while Au fine-tunes reactivity to promote methanol formation. DFT calculations confirm that isolated Pd sites at the PdAu/CeO2 interface play a key role in balancing activity and selectivity. This work underscores the importance of alloy/oxide interfaces in controlling selective methane conversion with water and offers valuable insights for designing highly efficient catalysts for methanol synthesis.

Conflict of Interests

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are openly available in Materials Cloud at 10.XXX/materialscloud:XXXX, reference number [REF].

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.