Engineering PdAu/CeO₂ Alloy/Oxide Interfaces for Selective Methane-to-Methanol Conversion with Water
Dr. Estefanía Fernández-Villanueva
Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022 Spain
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain
Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain
Search for more papers by this authorDr. Pedro J. Ramírez
Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Distrito Capital, 1020-A Venezuela
Zoneca-CENEX, R&D Laboratories, Alta Vista, Monterrey, 64770 Mexico
Search for more papers by this authorCorresponding Author
Dr. Pablo G. Lustemberg
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Rubén Pérez
Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain
Search for more papers by this authorCorresponding Author
Prof. M. Verónica Ganduglia-Pirovano
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. José A. Rodriguez
Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDr. Estefanía Fernández-Villanueva
Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022 Spain
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain
Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain
Search for more papers by this authorDr. Pedro J. Ramírez
Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Distrito Capital, 1020-A Venezuela
Zoneca-CENEX, R&D Laboratories, Alta Vista, Monterrey, 64770 Mexico
Search for more papers by this authorCorresponding Author
Dr. Pablo G. Lustemberg
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorProf. Rubén Pérez
Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain
Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, E-28049 Spain
Search for more papers by this authorCorresponding Author
Prof. M. Verónica Ganduglia-Pirovano
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/ de Marie Curie 2, Madrid, 28049 Spain
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. José A. Rodriguez
Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Selective methane-to-methanol conversion at 500 K over Pd0.3Au0.7/CeO2. The synergistic interaction between alloyed Pd–Au sites and the CeO2 support enhances catalytic performance, enabling highly selective methane-to-methanol under mild conditions. The reaction of CH4 with H2O produces CH3OH and H2, achieving ∼80% selectivity under mild conditions while maintaining stable long-term activity.
Abstract
The direct conversion of methane-to-methanol remains a critical challenge in methane valorization. In this study, we unveil the crucial role of PdAu/CeO2 catalysts in enabling selective methane transformation under mild conditions, using only water as the sole oxidant. Through a combination of experimental techniques, including XPS and catalytic testing, alongside density functional theory (DFT) calculations, we demonstrate that a Pd0.3Au0.7/CeO2 catalyst, which predominantly exposes isolated Pd atoms, achieves remarkable methanol selectivity (∼80%) at 500 K with a 1:1 methane-to-water ratio. While Pd/CeO2 efficiently activates methane, its tendency for overreaction leads to complete methanol decomposition, thereby limiting selectivity. Alloying Pd with Au on ceria mitigates this over-reactivity, preventing methanol degradation while maintaining sufficient catalytic activity. The PdAu/CeO₂ composite exhibits a synergistic effect: Pd in contact with the ceria support facilitates methane activation and water dissociation, while Au fine-tunes reactivity to promote methanol formation. DFT calculations confirm that isolated Pd sites at the PdAu/CeO2 interface play a key role in balancing activity and selectivity. This work underscores the importance of alloy/oxide interfaces in controlling selective methane conversion with water and offers valuable insights for designing highly efficient catalysts for methanol synthesis.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in Materials Cloud at 10.XXX/materialscloud:XXXX, reference number [REF].
Supporting Information
Filename | Description |
---|---|
anie202505716-sup-001-SuppMat.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Sun, Y. Wang, N. Guan, L. Li, Energy Technol. 2020, 8, 1900826.
- 2H. Wu, L. F. Liotta, in Methane in the Environment: Occurrence, Uses and Production (Ed: A. Basile), Nova Science Publishers: Hauppauge, NY, USA, 2013.
- 3P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 2014, 7, 2580–2591.
- 4M. A. Newton, A. J. Knorpp, A. B. Pinar, V. L. Sushkevich, D. Palagin, J. A. Van Bokhoven, J. Am. Chem. Soc. 2018, 140, 10090–10093.
- 5M. A. Newton, A. J. Knorpp, V. L. Sushkevich, D. Palagin, J. A. Van Bokhoven, Chem. Soc. Rev. 2020, 49, 1449–1486.
- 6D. K. Pappas, A. Martini, M. Dyballa, K. Kvande, S. Teketel, K. A. Lomachenko, R. Baran, P. Glatzel, B. Arstad, G. Berlier, C. Lamberti, S. Bordiga, U. Olsbye, S. Svelle, P. Beato, E. Borfecchia, J. Am. Chem. Soc. 2018, 140, 15270–15278.
- 7R. J. Lewis, G. J. Hutchings, Acc. Chem. Res. 2024, 57, 106–119.
- 8S. D. Senanayake, J. A. Rodriguez, J. F. Weaver, Acc. Chem. Res. 2020, 53, 1488–1497.
- 9J. D. Jiménez, P. G. Lustemberg, M. Danielis, E. Fernández-Villanueva, S. Hwang, I. Waluyo, A. Hunt, D. Wierzbicki, J. Zhang, L. Qi, A. Trovarelli, J. A. Rodriguez, S. Colussi, M. V. Ganduglia-Pirovano, S. D. Senanayake, J. Am. Chem. Soc. 2024, 146, 25986–25999.
- 10M. H. Mahyuddin, Y. Shiota, A. Staykov, K. Yoshizawa, Acc. Chem. Res. 2018, 51, 2382–2390.
- 11J. A. Rodriguez, N. Rui, F. Zhang, S. D. Senanayake, ACS Catal. 2022, 12, 5470–5488.
- 12W. Bi, Y. Tang, X. Li, C. Dai, C. Song, X. Guo, X. Ma, Commun. Chem. 2022, 5, 124.
- 13L. Luo, J. Luo, H. Li, F. Ren, Y. Zhang, A. Liu, W. X. Li, J. Zeng, Nat. Commun. 2021, 12, 1218.
- 14S. Wang, V. Fung, M. J. Hülsey, X. Liang, Z. Yu, J. Chang, A. Folli, R. J. Lewis, G. J. Hutchings, Q. He, N. Yan, Nat. Catal. 2023, 6, 895–905.
- 15N. F. Dummer, D. J. Willock, Q. He, M. J. Howard, R. J. Lewis, G. Qi, S. H. Taylor, J. Xu, D. Bethell, C. J. Kiely, G. J. Hutchings, Chem. Rev. 2023, 123, 6359–6411.
- 16P. K. Sajith, A. Staykov, M. Yoshida, Y. Shiota, K. Yoshizawa, J. Phys. Chem. C 2020, 124, 13231–13239.
- 17M. H. Ab Rahim, M. M. Forde, R. L. Jenkins, C. Hammond, Q. He, N. Dimitratos, J. A. Lopez-Sanchez, A. F. Carley, S. H. Taylor, D. J. Willock, D. M. Murphy, C. J. Kiely, G. J. Hutchings, Angew. Chem. Int. Ed. 2013, 52, 1280–1284.
- 18F. Ni, T. Richards, L. R. Smith, D. J. Morgan, T. E. Davies, R. J. Lewis, G. J. Hutchings, ACS Org. Inorg. Au 2023, 3, 177–183.
- 19E. Huang, P. Liu, J. Phys. Chem. Lett. 2023, 14, 6556–6563.
- 20P. G. Lustemberg, R. M. Palomino, R. A. Gutiérrez, D. C. Grinter, M. Vorokhta, Z. Liu, P. J. Ramírez, V. Matolín, M. V. Ganduglia-Pirovano, S. D. Senanayake, J. A. Rodriguez, J. Am. Chem. Soc. 2018, 140, 7681–7687.
- 21E. Huang, I. Orozco, P. J. Ramírez, Z. Liu, F. Zhang, M. Mahapatra, S. Nemšák, S. D. Senanayake, J. A. Rodriguez, P. Liu, J. Am. Chem. Soc. 2021, 143, 19018–19032.
- 22J. A. Dean, N. A. Lange, Lange's Handbook of Chemistry, McGraw-Hill, Distributed by Knovel 2001.
- 23J. Kim, H. Lim, Y. Tian, L. Piliai, A. Hunt, I. Waluyo, S. D. Senanayake, J. A. Rodriguez, J. Phys. Chem. Lett. 2024, 15, 6209–6215.
- 24F. Gao, D. W. Goodman, Chem. Soc. Rev. 2012, 41, 8009.
- 25T. Wei, J. Wang, D. W. Goodman, J. Phys. Chem. C 2007, 111, 8781–8788.
- 26J. A. Rodriguez, Surf. Sci. Rep. 1996, 24, 223–287.
- 27C. W. Yi, K. Luo, T. Wei, D. W. Goodman, J. Phys. Chem. B 2005, 109, 18535–18540.
- 28H. L. Abbott, A. Aumer, Y. Lei, C. Asokan, R. J. Meyer, M. Sterrer, S. Shaikhutdinov, H. J. Freund, J. Phys. Chem. C 2010, 114, 17099–17104.
- 29P. A. P. Nascente, S. G. C. de Castro, R. Landers, G. G. Kleiman, Phys. Rev. B 1991, 43, 4659–4666.
- 30G. Hetzendorf, P. Varga, Nucl. Inst. Meth. B 1986, 18, 501–503.
10.1016/S0168-583X(86)80076-3 Google Scholar
- 31W. R. Tyson, W. A. Miller, Surf. Sci. 1977, 62, 267–276.
- 32J. Zhou, A. P. Baddorf, D. R. Mullins, S. H. Overbury, J. Phys. Chem. C 2008, 112, 9336–9345.
- 33M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov, H.-J. Freund, J. Phys. Chem. C 2009, 113, 6042–6049.
- 34Y. Zhou, E. W. Peterson, J. Zhou, Top. Catal. 2015, 58, 134–142.
- 35V. Muravev, G. Spezzati, Y. Q. Su, A. Parastaev, F. K. Chiang, A. Longo, C. Escudero, N. Kosinov, E. J. M. Hensen, Nat. Catal. 2021, 4, 469–478.
- 36W. K. Kuhn, J. Szanyi, D. W. Goodman, Surf. Sci. 1992, 274, L611–L618.
- 37R. J. Levis, J. Zhicheng, N. Winograd, J. Am. Chem. Soc. 1989, 111, 4605–4612.
- 38J. A. Gates, L. L. Kesmodel, J. Catal. 1983, 83, 437–445.
- 39O. Rodriguez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter, H.-J. Freund, Surf. Sci. 2004, 566–568, 740–745.
- 40N. Kruse, M. Rebholz, V. Matolin, G. K. Chuah, J. H. Block, Surf. Sci. 1990, 238, L457–L462.
- 41E. Jeroro, J. M. Vohs, J. Am. Chem. Soc. 2008, 130, 10199–10207.
- 42C. J. Zhang, P. Hu, J. Chem. Phys. 2001, 115, 7182–7186.
- 43R. Jiang, W. Guo, M. Li, X. Lu, J. Yuan, H. Shan, Phys. Chem. Chem. Phys. 2010, 12, 7794.
- 44R. Jiang, W. Guo, M. Li, D. Fu, H. Shan, J. Phys. Chem. C 2009, 113, 4188–4197.
- 45Z. C. Kramer, X.-K. Gu, D. D. Y. Zhou, W.-X. Li, R. T. Skodje, J. Phys. Chem. C 2014, 118, 12364–12383.
- 46J. Gong, D. W. Flaherty, R. A. Ojifinni, J. M. White, C. B. Mullins, J. Phys. Chem. C 2008, 112, 5501–5509.
- 47D. R. Mullins, M. D. Robbins, J. Zhou, Surf. Sci. 2006, 600, 1547–1558.
- 48O. Gamba, J. Hulva, J. Pavelec, R. Bliem, M. Schmid, U. Diebold, G. S. Parkinson, Top. Catal. 2017, 60, 420–430.
- 49K. Tanaka, S. Matsuzaki, I. Toyoshima, J. Phys. Chem. 1993, 97, 5673–5677.
- 50P. G. Lustemberg, F. Zhang, R. A. Gutiérrez, P. J. Ramírez, S. D. Senanayake, J. A. Rodriguez, M. V. Ganduglia-Pirovano, J. Phys. Chem. Lett. 2020, 11, 9131–9137.
- 51P. G. Lustemberg, P. J. Ramírez, Z. Liu, R. A. Gutiérrez, D. G. Grinter, J. Carrasco, S. D. Senanayake, J. A. Rodriguez, M. V. Ganduglia-Pirovano, ACS Catal. 2016, 6, 8184–8191.
- 52D. R. Mullins, Surf. Sci. Rep. 2015, 70, 42–85.
- 53M. K. Bisbo, B. Hammer, Phys. Rev. Lett. 2020, 124, 86102.
- 54R. Shi, P. J. Ramírez, R. Rosales, M. Mahapatra, N. Rui, J. A. Rodriguez, J. Phys. Chem. C 2024, 128, 3260–3268.
- 55Y. Cao, Z.-X. Chen, Phys. Chem. Chem. Phys. 2007, 9, 739–746.
- 56A. A. Phatak, W. N. Delgass, F. H. Ribeiro, W. F. Schneider, J. Phys. Chem. C 2009, 113, 7269–7276.
- 57D. R. Mullins, P. M. Albrecht, T.-L. Chen, F. C. Calaza, M. D. Biegalski, H. M. Christen, S. H. Overbury, J. Phys. Chem. C 2012, 116, 19419–19428.
- 58J. Carrasco, D. López-Durán, Z. Liu, T. Duchoň, J. Evans, S. D. Senanayake, E. J. Crumlin, V. Matolín, J. A. Rodríguez, M. V. Ganduglia-Pirovano, Angew. Chem. Int. Ed. 2015, 54, 3917–3921.
- 59W. Yang, F. Polo-Garzon, H. Zhou, Z. Huang, M. Chi, H. Meyer, III, X. Yu, Y. Li, Z. Wu, Angew. Chem. Int. Ed. 2023, 62, e202217323.
- 60K. Prabhakar Reddy, J. Kim, H. Lim, A. Islam, I. Barba-Nieto, X. Tong, A. Hunt, I. Waluyo, J. A. Rodriguez, J. Phys. Chem. C 2025, 129, 2467–2476.
- 61M. Ouyang, K. G. Papanikolaou, A. Boubnov, A. S. Hoffman, G. Giannakakis, S. R. Bare, M. Stamatakis, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Nat. Commun. 2021, 12, 1549.
- 62L. Chen, S. I. Allec, M.-T. Nguyen, L. Kovarik, A. S. Hoffman, J. Hong, D. Meira, H. Shi, S. R. Bare, V.-A. Glezakou, R. Rousseau, J. Szanyi, J. Am. Chem. Soc. 2023, 145, 10847–10860.
- 63N. C. Nelson, L. Chen, D. Meira, L. Kovarik, J. Szanyi, Angew. Chem. Int. Ed. 2020, 59, 17657–17663.
- 64T. Hasegawa, S. M. F. Shahed, Y. Sainoo, A. Beniya, N. Isomura, Y. Watanabe, T. Komeda, J. Chem. Phys. 2014, 140, 044711.
- 65Z. Liu, E. Huang, I. Orozco, W. Liao, R. M. Palomino, N. Rui, T. Duchoň, S. Nemšák, D. C. Grinter, M. Mahapatra, P. Liu, J. A. Rodriguez, S. D. Senanayake, Science 2020, 368, 513–517.
- 66G. Kresse, J. Furthmüller, Phys. Rev. B Condens. Matter 1996, 54, 11169–11186.
- 67G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- 68G. Kresse, D. Joubert, Phys. Rev. B,1999, 59, 1758–1775.
- 69G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251–14269.
- 70P. E. Blöchl, Phys. Rev. B 1994, 50, 17953–17979.
- 71J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 72J. E. Quinlivan Domínguez, K. M. Neyman, A. Bruix, J. Chem. Phys. 2022, 157, 094709.
- 73S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 1998, 57, 1505–1509.
- 74S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 75S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 76G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901–9904.
- 77G. Henkelman, H. Jónsson, J. Chem. Phys. 1999, 111, 7010–7022.
- 78A. Heyden, A. T. Bell, F. J. Keil, J. Chem. Phys. 2005, 123, 224101.
- 79W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter 2009, 21, 084204.
- 80E. Sanville, S. D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 2007, 28, 899–908.
- 81G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354–360.
- 82 Jmol: an open-source Java viewer for chemical structures in 3D http://www.jmol.org/.
- 83K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.