Ru Single Atoms Anchored in Metal Borides Enable Hydrogen Spillover for Superior Electrochemical Ammonia Production
Yuanguo Chen
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Haoyun Bai
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao S.A.R., China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Jiao Lan
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Cheng-Wei Kao
National Synchrotron Radiation Research Center Hsinchu, Hsinchu, 300092 Taiwan
Search for more papers by this authorDr. Feng Xie
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Linghu Meng
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Jilong Li
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Ying-Rui Lu
National Synchrotron Radiation Research Center Hsinchu, Hsinchu, 300092 Taiwan
Search for more papers by this authorDr. Ming Peng
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorProf. Hui Pan
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao S.A.R., China
Search for more papers by this authorCorresponding Author
Prof. Yongwen Tan
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
E-mail: [email protected]
Search for more papers by this authorYuanguo Chen
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Haoyun Bai
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao S.A.R., China
Both authors contributed equally to this work.
Search for more papers by this authorDr. Jiao Lan
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Cheng-Wei Kao
National Synchrotron Radiation Research Center Hsinchu, Hsinchu, 300092 Taiwan
Search for more papers by this authorDr. Feng Xie
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Linghu Meng
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Jilong Li
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorDr. Ying-Rui Lu
National Synchrotron Radiation Research Center Hsinchu, Hsinchu, 300092 Taiwan
Search for more papers by this authorDr. Ming Peng
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
Search for more papers by this authorProf. Hui Pan
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao S.A.R., China
Search for more papers by this authorCorresponding Author
Prof. Yongwen Tan
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082 China
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Single-atom Ru-decorated nanoporous metal borides are developed as high-performance electrochemical nitrate reduction electrocatalysts utilizing an atomic-scale hydrogen spillover effect. This strategy facilitates dissociation of water into *H and promotes the *H spillover for increasing *H coverage on the surface, thereby synergistically reducing the hydrogenation energy barrier for converting nitrate into valuable ammonia products.
Abstract
The electrochemical reduction of nitrate represents a promising and sustainable route for valuable ammonia generation. However, a vital challenge in the nitrate reduction reaction is an insufficient supply of active hydrogen (*H) and slow kinetics at a low working potential, which result in low production efficiency and high energy consumption. Here, we report the single-atom Ru-decorated nanoporous metal borides as a high-performance electrochemical nitrate reduction electrocatalyst utilizing an atomic-scale hydrogen spillover effect. Notably, the RuSA/np-Ni3B exhibits a high NH3 Faradaic efficiency of 96.2%, an NH3 yield of 30.4 mg h−1 mg−1, and an energy efficiency of 39.1% at −0.1 V versus RHE. In situ electrochemical characterizations and theoretical calculations reveal that single-atom Ru anchored in nanoporous Ni3B not only can efficiently dissociate water into *H and simultaneously promote the *H spillover for increasing *H coverage on the surface but also can optimize surface states of Ni3B active centers, which synergistically reduces the hydrogenation energy barrier for converting nitrate into valuable ammonia products. A two-electrode electrolyzer integrating nitrate reduction reaction with furfuryl alcohol oxidation reaction achieves current density of 1 A cm−2 at −1.72 V with 100 h stability, improving the energy efficiency and economy of the system.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
anie202504568-sup-0001-SuppMat.docx199.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, A. Majumdar, Nature 2012, 488, 294–303.
- 2Y. Xiong, M. Sun, S. Wang, Y. Wang, J. Zhou, F. Hao, F. Liu, Y. Yan, X. Meng, L. Guo, Y. Liu, S. Chu, Q. Zhang, B. Huang, Z. Fan, Adv. Funct. Mater. 2025, 35, 2420153.
- 3J. Xu, S. Zhang, H. Liu, S. Liu, Y. Yuan, Y. Meng, M. Wang, C. Shen, Q. Peng, J. Chen, X. Wang, L. Song, K. Li, W. Chen, Angew. Chem. Int. Ed. 2023, 62, e202308044.
- 4F. Chen, Z. Wu, S. Gupta, D. Rivera, S. Lambeets, S. Pecaut, J. Kim, P. Zhu, Y. Finfrock, D. Motta Meira, G. King, G. Gao, W. Xu, D. Cullen, H. Zhou, Y. Han, D. Perea, C. Muhich, H. Wang, Nat. Nanotechnol. 2022, 17, 759–767.
- 5K. Liu, Z. Sun, X. Peng, X. Liu, X. Zhang, B. Zhou, K. Yu, Z. Chen, Q. Zhou, F. Zhang, Y. Wang, X. Gao, W. Chen, P. Chen, Nat. Commun. 2025, 16, 2167.
- 6J. Yu, R.-T. Gao, X. Guo, N. Truong Nguyen, L. Wu, L. Wang, Angew. Chem. Int. Ed. 2025, 64, e202415975.
- 7P. H. Van Langevelde, I. Katsounaros, M. T. M. Koper, Joule 2021, 5, 290–229.
- 8C. Yu, X. Huang, H. Chen, H. C. J. Godfray, J. S. Wright, J. W. Hall, P. Gong, S. Ni, S. Qiao, G. Huang, Y. Xiao, J. Zhang, Z. Feng, X. Ju, P. Ciais, N. C. Stenseth, D. O. Hessen, Z. Sun, L. Yu, W. Cai, H. Fu, X. Huang, C. Zhang, H. Liu, J. Taylor, Nature 2019, 567, 516–520.
- 9X. Chen, Y. Cheng, B. Zhang, J. Zhou, S. He, Nat. Commun. 2024, 15, 6278.
- 10H. Zheng, Y. Zhang, Y. Wang, Z. Wu, F. Lai, G. Chao, N. Zhang, L. Zhang, T. Liu, Small 2023, 19, 2205625.
- 11S. Zhang, M. Li, J. Li, Q. Song, X. Liu, Proc. Natl. Acad. Sci. USA 2022, 119, e2115504119.
- 12Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 2021, 50, 6720–6733.
- 13J. Zhang, T. Quast, B. Eid, Y. Chen, R. Zerdoumi, S. Dieckhöfer, J. Junqueira, S. Seisel, W. Schuhmann, Nat. Commun. 2024, 15, 8583.
- 14X. Zhu, C. Ma, Y. Wang, K. Qu, L. Song, J. Wang, Y. Gong, X. Liu, J. Zhang, Q. Lu, A. Wang, Energy Environ. Sci. 2024, 17, 2908.
- 15G. Zhang, X. Li, K. Chen, Y. Guo, D. Ma, K. Chu, Angew. Chem. Int. Ed. 2023, 62, e202300054.
- 16B. Wu, L. Huang, L. Yan, H. Gang, Y. Cao, D. Wei, H. Wang, Z. Guo, W. Zhang, Nano Lett. 2023, 23, 7120–7128.
- 17Y. Li, L. Li, S. Xu, K. Cui, T. Wang, Z. Jiang, J. Li, Angew. Chem. Int. Ed. 2024, 63, e202407810.
- 18S. Zheng, X. Dong, H. Chen, R. Huang, J. Cai, S. Zang, Angew. Chem. Int. Ed. 2025, 64, e202413033.
- 19Y. Li, Y. Liu, M. Zhang, L. Li, Z. Jiang, B. Han, B. Wang, J. Li, Angew. Chem. Int. Ed. 2025, 64, e202417631.
- 20W. Liao, J. Wang, G. Ni, K. Liu, C. Liu, S. Chen, Q. Wang, Y. Chen, T. Luo, X. Wang, Y. Wang, W. Li, T. Chan, C. Ma, H. Li, Y. Liang, W. Liu, J. Fu, B. Xi, M. Liu, Nat. Commun. 2024, 15, 1264.
- 21X. Zhao, Y. Jiang, M. Wang, S. Liu, Z. Wang, T. Qian, C. Yan, Adv. Energy Mater. 2023, 13, 2301409.
- 22Y. Zhou, L. Zhang, Z. Zhu, M. Wang, N. Li, T. Qian, C. Yan, J. Lu, Angew. Chem. Int. Ed. 2024, 63, e202319029.
- 23Z. Shi, X. Zhang, X. Lin, G. Liu, C. Ling, S. Xi, B. Chen, Y. Ge, C. Tan, Z. Lai, Z. Huang, X. Ruan, L. Zhai, L. Li, Z. Li, X. Wang, G.-H. Nam, J. Liu, Q. He, Z. Guan, J. Wang, C.-S. Lee, A. R. J. Kucernak, H. Zhang, Nature 2023, 621, 300–305.
- 24Y. Xiao, J. Ying, J. Chen, X. Yang, G. Tian, J. Li, C. Janiak, X. Yang, Adv. Funct. Mater. 2025, 35, 2418264.
- 25H. Fu, S. Lu, Y. Xin, S. Xiao, L. Chen, Y. Li, K. Shen, Energy Environ. Sci. 2025, 18, 818–830.
- 26T. Xiang, Y. Liang, Y. Zeng, J. Deng, J. Yuan, W. Xiong, B. Song, C. Zhou, Y. Yang, Small 2023, 19, 2303732.
- 27T. Chao, W. Xie, Y. Hu, G. Yu, T. Zhao, C. Chen, Z. Zhang, X. Hong, H. Jin, D. Wang, W. Chen, X. Li, P. Hu, Y. Li, Energy Environ. Sci. 2024, 17, 1397.
- 28Y. Pang, X. Wan, Y. Li, M. Song, X. Liu, J. Shang, L. Zheng, J. Shui, Adv. Mater. 2024, 36, 2412942.
- 29Y. Zhang, H. Zheng, K. Zhou, J. Ye, K. Chu, Z. Zhou, L. Zhang, T. Liu, Adv. Mater. 2023, 35, 2209855.
- 30Y. Ding, S. Zhang, Y. Liu, Y. Liu, H. Zheng, L. Qing, Y. Song, Z. Ma, L. Zhang, T. Liu, Adv. Funct. Mater. 2025, 35, 2422339.
- 31Y. Shi, Z. Ma, Y. Xiao, Y. Yin, W. Huang, Z. Huang, Y. Zheng, F. Mu, R. Huang, G. Shi, Y. Sun, X. Xia, W. Chen, Nat. Commun. 2021, 12, 3021.
- 32K. Jiang, Z. Liu, Y.-R. Lu, M. Wang, D. Chen, L. Cai, T.-S. Chan, P. Liu, A. Pan, Y. Tan, Adv. Mater. 2023, 35, 2207850.
- 33L. Cai, H. Bai, C. Kao, K. Jiang, H. Pan, Y.-R. Lu, Y. Tan, Small 2024, 20, 2311178.
- 34Z. Wu, X. Kang, S. Wang, Y. Song, F. Xie, X. Duan, J. Yang, Adv. Funct. Mater. 2024, 34, 2406917.
- 35S. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402–414.
- 36Y. Xu, C. Cheng, J. Zhu, B. Zhang, Y. Wang, Y. Yu, Angew. Chem. Int. Ed. 2024, 63, e202400289.
- 37Y. Lou, Q. Zheng, S. Zhou, J. Fang, O. Akdim, X. Ding, R. Oh, G. Park, X. Huang, S. Sun, ACS Catal. 2024, 14, 5098–5108.
- 38X. Ge, R. Pan, H. Xie, S. Hu, J. Yuan, Nano Lett. 2024, 24, 12218–12225.
- 39J. Guan, L. Cai, W. Li, H. Zhou, Y. Huang, Appl. Catal. B Environ. 2024, 358, 124387.
- 40T. Xiang, X. Liu, Z. Wang, Y. Zeng, J. Deng, W. Xiong, M. Cheng, J. Liu, C. Zhou, Y. Yang, Appl. Catal. B Environ. 2025, 365, 124943.
- 41Q. Gao, B. Yao, H. S. Pillai, W. Zang, X. Han, Y. Liu, S. Yu, Z. Yan, B. Min, S. Zhang, H. Zhou, L. Ma, H. Xin, Q. He, H. Zhu, Nat. Synth. 2023, 2, 624–634.
- 42B. Zhang, Z. Dai, Y. Chen, M. Cheng, H. Zhang, P. Feng, B. Ke, Y. Zhang, G. Zhang, Nat. Commun. 2024, 15, 2816.
- 43S. Liang, X. Teng, H. Xu, L. Chen, J. Shi, Angew. Chem. Int. Ed. 2024, 63, e202400206.
- 44Z. Fan, C. Cao, X. Yang, W. Yuan, F. Qin, Y. Hu, X. Sun, G. Liu, Y. Tian, L. Xu, Angew. Chem. Int. Ed. 2024, 63, e202410356.
- 45Z. Lu, R. Yang, Y. Yu, Y. Wang, B. Zhang, L. Kong, Chem. Catal. 2025, 5, 101152.
- 46K. Chen, Z. Ma, X. Li, J. Kang, D. Ma, K. Chu, Adv. Funct. Mater. 2023, 33, 2209890.
- 47S. Li, R. Ma, C. Tu, W. Zhang, R. Li, Y. Zhao, K. A. I. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202421.