Electrolytes with Tailored Solvent–Solvent Interactions for Flame-Retardant Stable Sodium-Metal Batteries.
Zhangbin Cheng
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorZehui Zhang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorMingtian Wu
School of Arts, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorProf. Min Jia
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorXinyi Du
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorZheng Gao
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorShuai Tong
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorTao Wang
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaohong Yan
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xiaoyu Zhang
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Haoshen Zhou
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing, 210093 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhangbin Cheng
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorZehui Zhang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorMingtian Wu
School of Arts, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorProf. Min Jia
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorXinyi Du
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorZheng Gao
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorShuai Tong
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorTao Wang
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaohong Yan
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xiaoyu Zhang
School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Haoshen Zhou
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing, 210093 P.R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This work, by introducing solvent–solvent interactions, achieves an ion-aggregate-rich solvation structure at low concentrations, promoting the formation of an inorganic-rich SEI, effectively suppressing the reaction between trimethyl phosphate and the sodium metal anode, thereby enabling stable cycling of Na||Na3V2(PO4)3 battery.
Abstract
Sodium metal batteries (SMBs), which possess abundant sodium resources and high energy density, have attracted widespread attention. However, the continuous reaction between the electrolyte and the sodium metal anode, along with the formation of an unstable solid electrolyte interphase (SEI), leads to rapid capacity decay and the safety hazard of potential ignition. In this work, designing a low-cost and flame-retardant electrolyte with solvent–solvent interactions is achieved by introducing sodium-difluoro(oxalato)borate (NaDFOB) as a single salt into the ester-based electrolyte on the basis of trimethyl phosphate. Theoretical research combined with experimental study disclose through the solvent–solvent interactions, an ion-aggregate-rich solvation structure is formed at low concentrations, leading to the formation of a gradient SEI enriched with inorganic compounds such as B and F on the anode. This effectively suppresses interfacial reactions and sodium dendrite growth, significantly improving the cycling stability along with the optimizing the safety of SMBs. The Na||Na3V2(PO4)3 battery using this electrolyte maintains a high-capacity retention of 93% after 5000 cycles (320 days) at 1C. This approach provides a reliable solution for the application of flame-retardant electrolytes in SMBs, which also sheds light on the designing principle of advanced battery systems.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202503864-supp-0001-SuppMat.docx3.2 MB | Supporting Information |
anie202503864-supp-0002-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zhao, K. R. Adair, X. Sun, Energy Environ. Sci. 2018, 11, 2673–2695.
- 2C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 1–11.
- 3Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577–3613.
- 4S. Wu, B. Su, K. Ni, F. Pan, C. Wang, K. Zhang, D. Y. Yu, Y. Zhu, W. Zhang, Adv. Energy Mater. 2021, 11, 2002737.
- 5Y. Liu, L. Zhu, E. Wang, Y. An, Y. Liu, K. Shen, M. He, Y. Jia, G. Ye, Z. Xiao, Y. Li, Q. Pang, Adv. Mater. 2024, 36, 2310051.
- 6J. Chen, Z. Yang, X. U. Xu, Y. Qiao, Z. Zhou, Z. Hao, X. Chen, Y. Liu, X. Wu, X. Zhou, L. Li, S.-L. Chou, Adv. Mater. 2024, 36, 2400169.
- 7X. Wang, C. Zhang, M. Sawczyk, J. U. Sun, Q. Yuan, F. Chen, T. C. Mendes, P. C. Howlett, C. Fu, Y. Wang, X. Tan, D. J. Searles, P. Král, C. J. Hawker, A. K. Whittaker, M. Forsyth, Nat. Mater. 2022, 21, 1057–1065.
- 8Y. Zou, G. Liu, Y. Wang, Q. Li, Z. Ma, D. Yin, Y. Liang, Z. Cao, L. Cavallo, H. Kim, L. Wang, H. N. Alshareef, Y.-K. Sun, J. Ming, Adv. Energy Mater. 2023, 13, 2300443.
- 9J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2018, 3, 22–29.
- 10Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee, K. Kim, E. Nakamura, A. Yamada, Nat. Energy 2020, 5, 291–298.
- 11T. Tamura, K. Yoshida, T. Hachida, M. Tsuchiya, M. Nakamura, Y. Kazue, N. Tachikawa, K. Dokko, M. Watanabe, Chem. Lett. 2010, 39, 753–755.
- 12K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121–13129.
- 13Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang, S. C. Kim, J. C. Lai, X. Kong, J. Qin, Y. Cui, Z. Bao, J. Mater. Chem. A 2021, 143, 18703–18713.
- 14T. M. Pappenfus, W. A. Henderson, B. B. Owens, K. R. Mann, W. Smyrl, J. Electrochem. Soc. 2004, 151, A209.
- 15W. W. van Ekeren, M. Albuquerque, G. Ek, R. Mogensen, W. R. Brant, L. T. Costa, D. Brandell, R. Younesi, J. Mater. Chem. A 2023, 11, 4111–4125.
- 16S. Liu, J. Mao, Q. Zhang, Z. Wang, W. K. Pang, L. Zhang, A. Du, V. Sencadas, W. Zhang, Z. Guo, Angew. Chem. Int. Ed. 2020, 59, 3638–3644.
- 17L. Qin, N. Xiao, J. Zheng, Y. Lei, D. Zhai, Y. Wu, Adv. Energy Mater. 2019, 9, 1902618.
- 18Z. Cheng, Z. Zhang, F. Qiu, Z. Gao, H. Xie, Z. Xu, M. Jia, X. Zhang, H. Zhou, ACS Energy Lett. 2025, 10, 177–184.
- 19X. Ren, S. Chen, H. Lee, D. Mei, M. H. Engelhard, S. D. Burton, W. Zhao, J. Zheng, Q. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J.-G. Zhang, W. Xu, Chem 2018, 4, 1877–1892
- 20J. Zheng, S. Chen, W. Zhao, J. Song, M. H. Engelhard, J.-G. Zhang, ACS Energy Lett. 2018, 3, 315–321.
- 21L. Su, X. Zhao, M. Yi, H. Charalambous, H. Celio, Y. Liu, A. Manthiram, Adv. Energy Mater. 2022, 12, 2201911.
- 22H. Zhang, Z. Zeng, R. He, Y. Wu, W. Hu, S. Lei, M. Liu, S. Cheng, J. Xie, Energy Storage Mater. 2022, 48, 393–402.
- 23E. Huangzhang, X. Zeng, T. Yang, H. Liu, C. Sun, Y. Fan, H. Hu, X. Zhao, X. Zuo, J. Nan, Chem. Eng. J. 2022, 439, 135534.
- 24H. Tu, L. Li, Y. Hu, Y. Zhang, Y. Wang, W. Huang, Z. Ren, H. Lin, M. Liu, Chem. Eng. J. 2022, 434, 134647.
- 25C. Zhu, C. Sun, R. Li, S. Weng, L. Fan, X. Wang, L. Chen, M. Noked, X. Fan, ACS Energy Lett. 2022, 7, 1338–1347.
- 26X. Peng, Y. Lin, Y. Wang, Y. Li, T. Zhao, Nano Energy 2022, 96, 107102.
- 27C. Zhang, S. Gu, D. Zhang, J. Ma, H. Zheng, M. Zheng, R. Lv, K. Yu, J. Wu, X. Wang, Q.-H. Yang, F. Kang, W. Lv, Energy Storage Mater. 2022, 52, 355–364.
- 28Z. Xu, K. Deng, S. Zhou, D. Mo, J. Power Sources 2023, 559, 232631.
- 29J. Chen, H. Yang, X. Zhang, J. Lei, H. Zhang, H. Yuan, J. Yang, Y. Nuli, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 33419–33427.
- 30Y. Wang, R. Jiang, Y. Liu, H. Zheng, W. Fang, X. Liang, Y. Sun, R. Zhou, H. Xiang, ACS Appl. Energy Mater. 2021, 4, 7376–7384.
- 31J. He, A. Bhargav, W. Shin, A. Manthiram, J. Mater. Chem. A 2021, 143, 20241–20248.
- 32W. Fang, R. Jiang, H. Zheng, Y. Zheng, Y. Sun, X. Liang, H.-F. Xiang, Y.-Z. Feng, Y. Yu, Rare Met. 2021, 40, 433–439.
- 33J. He, A. Bhargav, L. Su, J. Lamb, J. Okasinski, W. Shin, A. Manthiram, Nat. Energy 2024, 9, 446–456.
- 34X. Zheng, Z. Gu, X. Liu, Z. Wang, J. Wen, X. Wu, W. Luo, Y. Huang, Energy Environ. Sci. 2020, 13, 1788–1798.
- 35X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai, X. Liu, Z. Wang, H. Zheng, Y. Huang, ACS Energy Lett. 2021, 6, 2054–2063.
- 36L. Gao, J. Chen, Y. Liu, Y. Yamauchi, Z. Huang, X. Kong, J. Mater. Chem. A 2018, 6, 12012–12017.
- 37L. Gao, J. Chen, Q. Chen, X. Kong, Sci. Adv. 2022, 8, eabm4606.
- 38H. Liang, P. Kumar, Z. Ma, F. Zhao, H. Cheng, H. Xie, Z. Cao, L. Cavallo, Q. Li, J. Ming, ACS Energy Lett. 2024, 9, 3536–3546.
- 39Q. Li, G. Liu, P. Kumar, F. Zhao, Y. Wang, T. Cai, Y. Chen, H. Xie, W. Wahyudi, Z. Ma, J. Ming, Adv. Funct. Mater. 2025, 35, 2416714.
- 40Y. Wang, H. Yang, J. Xu, P. Tang, Q. Wei, T. Hu, X. Gao, Z. Guo, R. Fang, G. Hu, S. Bai, F. Li, J. Am. Chem. Soc. 2024, 146, 7332–7340.
- 41Q. Zhao, S. Stalin, L. A. Archer, Joule 2021, 5, 1119–1142.
- 42X. Liu, J. Zhao, H. Dong, L. Zhang, H. Zhang, Y. Gao, X. Zhou, L. Zhang, L. I. Li, Y. Liu, S. Chou, W. Lai, C. Zhang, S. Chou, Adv. Funct. Mater. 2024, 34, 2402310.
- 43Y. Liu, S. Lu, Z. Wang, J. Xu, S. Weng, J. Xue, H. Tu, F. Zhang, L. Liu, Y. Gao, H. Li, J. Zheng, X. Wu, Adv. Funct. Mater. 2024, 34, 2312295.
- 44S.-D. Han, J. L. Allen, E. Jónsson, P. Johansson, D. W. McOwen, P. D. Boyle, W. A. Henderson, J. Phys. Chem. C 2013, 117, 5521–5531.
- 45K. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 46X. Liu, X. Jiang, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, ACS Appl. Mater. Interfaces 2019, 11, 27833–27838.
- 47X. Liu, X. Zheng, Y. Dai, W. Wu, Y. Huang, H. Fu, Y. Huang, W. Luo, Adv. Funct. Mater. 2021, 31, 2103522.
- 48R. Jiang, L. Hong, Y. Liu, Y. Wang, S. Patel, X. Feng, H. Xiang, Energy Storage Mater. 2021, 42, 370–379.
- 49W. Fang, H. Jiang, Y. Zheng, H. Zheng, X. Liang, Y. Sun, C. Chen, H. Xiang, J. Power Sources 2020, 455, 227956.
- 50Y. Liu, R. Jiang, H. Xiang, Z. Huang, Y. Yu, Electrochim. Acta 2022, 425, 140746.
- 51X. Zheng, H. Fu, C. Hu, H. Xu, Y. Huang, J. Wen, H. Sun, W. Luo, Y. Huang, J. Phys. Chem. Lett. 2019, 10, 707–714.
- 52X. Gao, J. You, L. Deng, B. Zhang, Y. Li, W. Wang, J. Mater. Chem. A 2024, 12, 25211–25221.
- 53X. Liu, X. Zheng, X. Qin, Y. Deng, Y. Dai, T. Zhao, Z. Wang, H. Yang, W. Luo, Nano Energy 2022, 103, 107746.
- 54X. Yi, X. Li, J. Zhong, Z. Wang, H. Guo, W. Peng, J. Duan, D. Wang, J. Wang, G. Yan, Small 2023, 19, e2304162.
- 55J. Chen, Z. Yang, X. Xu, Y. Qiao, Z. Zhou, Z. Hao, X. Chen, Y. Liu, X. Wu, X. Zhou, L. Li, S. L. Chou, Adv. Mater. 2024, 36, e2400169.
- 56M. Li, J. Jiang, Y. Chen, S. Huang, X. Liu, J. Yi, Y. Jiang, B. Zhao, W. Li, X. Sun, J. Zhang, Angew. Chem. Int. Ed. 2025, 64, e202413806.