Boosting Nonradiative Decay of Boron Difluoride Formazanate Dendrimers for NIR-II Photothermal Theranostics
Hanming Dai
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorJingyi Pan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorCorresponding Author
Jinjun Shao
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKang Xu
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorXiaohong Ruan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorAnqing Mei
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorPeng Chen
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459 Singapore
Search for more papers by this authorCorresponding Author
Lulu Qu
School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaochen Dong
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHanming Dai
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorJingyi Pan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorCorresponding Author
Jinjun Shao
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKang Xu
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorXiaohong Ruan
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorAnqing Mei
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorPeng Chen
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459 Singapore
Search for more papers by this authorCorresponding Author
Lulu Qu
School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaochen Dong
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 China
School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
We employed a dendrimer engineering strategy to develop the boron difluoride formazanate (BDF) dye BDF-8OMe for photoacoustic imaging-mediated NIR-II photothermal therapy. The multiple identical dendritic units of BDF-8OMe significantly enhanced the molecular motions, enabling the nanoparticles to release 94.4% of the excited state energy rapidly through nonradiative decay at a rate of 11.7 ps. Under 1064 nm photoirradiation, BDF-8OMe NPs achieved a high photothermal conversion efficiency of 62.5%, facilitating NIR-II photothermal theranostics.
Abstract
The development of small molecular dyes excitable in the second near-infrared window (NIR-II, 1000–1700 nm) is crucial for deep-tissue penetration and maximum permissible exposure in cancer photothermal theranostics. Herein, we employed a dendrimer engineering strategy to develop the boron difluoride formazanate (BDF) dye BDF-8OMe for photoacoustic imaging-mediated NIR-II photothermal therapy. BDF-8OMe, characterized by an increased molecular branching degree and extended π-conjugation, exhibited broad absorbance peaked at 905 nm, with the absorption tail extending to 1300 nm. Additionally, reorganization energy calculation, molecular dynamics simulation, and femtosecond transient absorption spectroscopy demonstrated that the multiple identical dendritic units of BDF-8OMe significantly enhanced the molecular motions, enabling the nanoparticles (NPs) to rapidly release 94.4% of the excited state energy through nonradiative decay at a rate of 11.7 ps. Under 1064 nm photoirradiation, BDF-8OMe NPs achieved a high photothermal conversion efficiency of 62.5%, facilitating NIR-II photothermal theranostics. This work highlights the potential of the dendrimer-building strategy in developing NIR-II excitable small molecular dyes for efficient photothermal theranostics.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202503718-sup-0001-SuppMat.docx61.1 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Cui, Q. Ruan, X. Zhuo, X. Xia, J. Hu, R. Fu, Y. Li, J. Wang, H. Xu, Chem. Rev. 2023, 123, 6891.
- 2K. Yang, S. Zhao, B. Li, B. Wang, M. Lan, X. Song, Chem. Rev. 2022, 454, 214330.
- 3S. Song, Y. Zhao, M. Kang, F. Zhang, Q. Wu, N. Niu, H. Yang, H. Wen, S. Fu, X. Li, Z. Zhang, B. Z. Tang, D. Wang, Adv. Mater. 2024, 36, 2309748.
- 4C. Ou, W. Na, W. Ge, H. Huang, F. Gao, L. Zhong, Y. Zhao, X. Dong, Angew. Chem. Int. Ed. 2021, 60, 8157.
- 5X. Li, J. F. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 2020, 17, 657.
- 6J. Shi, P. W. Kantoff, R. Wooster, O. C. Farokhzad, Nat. Rev. Cancer 2017, 17, 20.
- 7R. Sun, J. Xiang, Q. Zhou, Y. Piao, J. Tang, S. Shao, Z. Zhou, Y. H. Bae, Y. Shen, Adv. Drug Delivery Rev. 2022, 191, 114614.
- 8J. Zhang, W. Wang, J. Shao, J. Chen, X. Dong, Coordin. Chem. Rev. 2024, 516, 215986.
- 9Z. Zhao, C. B. Swartchick, J. Chan, Chem. Soc. Rev. 2022, 51, 829.
- 10Q. Shen, L. Wang, X. Ruan, N. Li, W. Wang, W. Wang, J. Shao, X. Dong, Adv. Funct. Mater. 2023, 33, 2300023.
- 11F. Wang, Y. Zhong, O. Bruns, Y. Liang, H. Dai, Nat. Photon. 2024, 18, 535.
- 12Z. Zhang, Y. Du, X. Shi, K. Wang, Q. Qu, Q. Liang, X. Ma, K. He, C. Chi, J. Tang, B.o Liu, J. Ji, J. Wang, J. Dong, Z. Hu, J. Tian, Nat. Rev. Clin. Oncol. 2024, 21, 449.
- 13L. Wang, N. Li, W. Wang, A. Mei, J. Shao, W. Wang, X. Dong, ACS Nano 2024, 18, 4683.
- 14H. Xiang, L. Zhao, L. Yu, H. Chen, C. Wei, Y. Chen, Y. Zhao, Nat. Commun. 2021, 12, 218.
- 15Y. Chen, P. He, D. Jana, D. Wang, M. Wang, P. Yu, W. Zhu, Y. Zhao, Adv. Mater. 2022, 34, e2201706.
- 16Z. Fang, J. Zhang, Z. Shi, L. Wang, Y.i Liu, J. Wang, J. Jiang, D. Yang, H. Bai, B.o Peng, H. Wang, X. Huang, J. Li, L. Li, W. Huang, Adv. Mater. 2023, 35, 2301901.
- 17Y. Wan, W. Chen, Y. Liu, K.a-W. Lee, Y. Gao, D.i Zhang, Y. Li, Z. Huang, J. Luo, C.-S. Lee, S. Li, Adv. Mater. 2024, 36, 2405966.
- 18A. Mei, X. He, D. Lei, L. Wang, W. Wang, J. Shao, Q. Shen, F. Jiang, X. Dong, Coordin. Chem. Rev. 2025, 527, 216419.
- 19S. Tian, H. Bai, S. Li, Y. Xiao, X. Cui, X. Li, J. Tan, Z. Huang, D. Shen, W. Liu, P. Wang, B. Z. Tang, C.-S. Lee, Angew. Chem. Int. Ed. 2021, 60, 11758.
- 20Y. Gui, Y. Wang, D. Wang, Y. Qin, G. Song, D. Yan, B. Z. Tang, D. Wang, Angew. Chem. Int. Ed. 2024, 63, 202318609.
- 21B. Li, M. Zhao, J. Lin, P. Huang, X. Chen, Chem. Soc. Rev. 2022, 51, 7692.
- 22D. Yan, Z. Zhang, J. Zhang, X. Li, Q. Wu, Y. Gui, J. Zhu, M. Kang, X. Chen, B. Z. Tang, D. Wang, Angew. Chem. Int. Ed. 2024, 63, 202401877.
- 23B. Li, W. Wang, L.u Zhao, Y. Wu, X. Li, D. Yan, Q. Gao, Y. Yan, J. Zhang, Y.i Feng, J. Zheng, B. Shu, J. Wang, H. Wang, L. He, Y. Zhang, M. Pan, D. Wang, B. Z. Tang, Y. Liao, Nat. Nanotechnol. 2024, 19, 834.
- 24Z.e-H. Wu, M. Peng, C. Ji, P. Kardasis, I. Tzourtzouklis, M. Baumgarten, H. Wu, T. Basché, G. Floudas, M. Yin, K. Müllen, J. Am. Chem. Soc. 2023, 145, 26487.
- 25H. Gao, Y. Yao, C. Li, J. Zhang, H. Yu, X. Yang, J. Shen, Q. Liu, R. Xu, X. Gao, D. Ding, Angew. Chem. Int. Ed. 2024, 63, 202400372.
- 26Y. Z. Liu, X. Y. Ran, D. H. Zhou, H. Zhang, Y. J. Chen, J. X. Xu, S. Y. Chen, Q. Q. Kong, X. Q. Yu, K. Li, Adv. Funct. Mater. 2024, 34, 2311365.
- 27D.-Y. Li, S.-W. Li, Y.-L. Xie, X. Hua, Y.-T. Long, A. Wang, P.-N. Liu, Nat. Commun. 2019, 10, 2414.
- 28H. Li, S. Zha, H. Li, H. Liu, K. L. Wong, A. H. All, Small 2022, 18, 2203629.
- 29S. Mignani, J. Rodrigues, H. Tomas, M. Zablocka, X. Shi, A.-M. Caminade, J.-P. Majoral, Chem. Soc. Rev. 2018, 47, 514.
- 30R. Sapra, R. P. Verma, G. P. Maurya, S. Dhawan, J. Babu, V. Haridas, Chem. Rev. 2019, 119, 11391.
- 31X. Wang, M. Zhang, Y. Li, H. Cong, B. Yu, Y. Shen, Small 2023, 19, 2304006.
- 32P. L. Burn, S. C. Lo, I. D. W. Samuel, Adv. Mater. 2007, 19, 1675.
- 33A.-M. Caminade, A. Ouali, R. Laurent, C.-O. Turrin, J.-P. Majoral, Coordin. Chem. Rev. 2016, 308, 478.
- 34D. Sun, E. Duda, X. Fan, R. Saxena, M. Zhang, S. Bagnich, X. Zhang, A. Köhler, E. Zysman-Colman, Adv. Mater. 2022, 34, 2110344.
- 35W.-J. Li, Z. Hu, L. Xu, X.u-Q. Wang, W. Wang, G.-Q. Yin, D.-Y. Zhang, Z. Sun, X. Li, H. Sun, H.-B.o Yang, J. Am. Chem. Soc. 2020, 142, 16748.
- 36W. Chen, Y. Wang, B. Liu, Y. Gao, Z. Wu, Y. Shi, Y. Tang, K. Yang, Y. Zhang, W. Sun, X. Feng, F. Laquai, H. Y. Woo, A. B. Djurisic, X. Guo, Z. He, Sci. China Chem. 2021, 64, 41.
- 37C. Li, A. K. Harrison, Y. Liu, Z. Zhao, C. Zeng, F. B. Dias, Z. Ren, S. Yan, M. R. Bryce, Angew. Chem. Int. Ed. 2022, 134, 202115140.
- 38X. Jiang, Z. J. O'Brien, S. Yang, L. H. Lai, J. Buenaflor, C. Tan, S. Khan, K. N. Houk, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2016, 138, 4650.
- 39Z. Wang, Y. Liu, C. He, X. Zhang, X. Li, Y. Li, Y. Tang, X. Lu, Q. Fan, Small 2024, 20, 2307829.
- 40Y. Ni, T. Y. Gopalakrishna, H. Phan, T. S. Herng, S. Wu, Y. Han, J. Ding, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 9697.
- 41X. Kong, J. Liang, M. Lu, K. Zhang, E. Zhao, X. Kang, G. Wang, Q. Yu, Z. Gan, X. Gu, Adv. Mater. 2024, 36, 2409041.
- 42Z. Jiang, C. Zhang, X. Wang, M. Yan, Z. Ling, Y. Chen, Z. Liu, Angew. Chem. Int. Ed. 2021, 60, 22376.
- 43X. Hu, Q. Jia, Q. Fang, C. Song, R. Zhang, Y. Liang, Z. Yang, J. Wu, H. Li, T. Zhao, D. Zhao, Z. Wang, Adv. Funct. Mater. 2024, 34, 2407100.
- 44P. Chen, F. Qu, S. Chen, J. Li, Q. Shen, P. Sun, Q. Fan, Adv. Funct. Mater. 2022, 32, 2208463.
- 45S. Li, Q. Deng, Y. Zhang, X. Li, G. Wen, X. Cui, Y. Wan, Y. Huang, J. Chen, Z. Liu, L. Wang, C.-S. Lee, Adv. Mater. 2020, 32, e2001146.
- 46M. Yang, X. Ou, J. Li, J. Sun, Z. Zhao, J. W. Y. Lam, J. Fan, B. Z. Tang, Angew. Chem. Int. Ed. 2024, 63, 202407307.
- 47Y. Li, Z. Cai, S. Liu, H. Zhang, S. T. H. Wong, J. W. Y. Lam, R. T. K. Kwok, J. Qian, B. Z. Tang, Nat. Commun. 2020, 11, 1255.
- 48M. Yang, X. Ou, J. Zhang, J. Sun, R. T. K. Kwok, J. W. Y. Lam, J. Fan, B. Z. Tang, Adv. Funct. Mater. 2025, 35, 2411838.
- 49M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1-2, 19.
10.1016/j.softx.2015.06.001 Google Scholar
- 50Z. Shi, H. Bai, J. Wu, X. Miao, J. Gao, X. Xu, Y.i Liu, J. Jiang, J. Yang, J. Zhang, T. Shao, B.o Peng, H. Ma, D. Zhu, G. Chen, W. Hu, L. Li, W. Huang, Research 2023, 6, 0169.
- 51Y. Liang, Y. Pan, L. Chen, P. Li, M. Xu, H. Zhou, X. Lu, W. Hu, C. Yin, Q. Fan, Angew. Chem. Int. Ed. 2024, 63, 202408861.
- 52X. Miao, W. Yao, R. Chen, M. Jia, C. Ren, H. Zhao, T. He, Q. Fan, W. Hu, Adv. Mater. 2023, 35, 2301739.
- 53S. Chen, Y. Pan, K. Chen, P. Chen, Q. Shen, P. Sun, W. Hu, Q. Fan, Angew. Chem. Int. Ed. 2023, 62, e202215372.