Double-Chain Copolymer Network via In Situ Polymerization Enables High-Stability and Lead-Safe Perovskite Solar Cells
Jiaxin Ma
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorShengnan Fan
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCong Shao
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLizhe Wang
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYuan Dong
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorGuosheng Niu
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZongxiu Nie
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shiyong Yang
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jizheng Wang
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haixia Yang
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiaxin Ma
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorShengnan Fan
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCong Shao
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLizhe Wang
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYuan Dong
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorGuosheng Niu
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZongxiu Nie
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shiyong Yang
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jizheng Wang
Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haixia Yang
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
A multifunctional additive poly(amide ester) (PAE) with photosensitive properties was designed to construct a unique double-chain copolymer network via in situ polymerization induced by ultraviolet (UV) light. The vast network provides an effective defense to delay the degradation of devices and maximize the suppression of toxic lead leakage. The devices protected by the network achieved a champion efficiency of 26.20% (certified as 25.69%) with excellent stability and lead safety.
Abstract
Lead halide perovskite solar cells (PSCs) have made significant progress due to their low cost and high efficiency. However, the long-term stability and lead toxicity of PSCs remain a huge challenge for further commercialization. Herein, we designed a multifunctional additive, poly(amide ester) (PAE), with photosensitive properties to overcome these difficulties. A unique double-chain copolymer network can be constructed via in situ polymerization induced by ultraviolet (UV) light. The multiple active sites in the polymer chains can passivate various defects and enhance charge transfer. Meanwhile, the vast network provides an effective defense for perovskite to stabilize the internal structure and resist harsh external environments, thus delaying the degradation of devices and maximizing the suppression of toxic lead leakage. Remarkably, the devices protected by the network achieved a champion power conversion efficiency (PCE) of 26.20% (certified as 25.69%), the unencapsulated devices suppressed 80% of lead leakage, and the encapsulated devices maintained 93% of the initial PCE after 1000 h in a humid and thermal environment (65 °C and 85% RH).
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202425578-sup-0001-SuppMat.docx6.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476–480.
- 2M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
- 3 National Renewable Energy Laboratory (NREL). Research Cell Efficiency Records, http://www.nrel.gov/ncpv/images/efficiencychart.jpg (accessed: December 2024).
- 4M. Gao, Y. Zhang, Z. Lin, J. Jin, M. C. Folgueras, P. Yang, Matter 2021, 4, 3874–3896.
- 5L. Chen, B. Zhou, Y. Hu, H. Dong, G. Zhang, Y. Shi, L. Zhang, Adv. Optical Mater. 2022, 10, 2200494.
- 6Q. Ji, Y. Wu, X. Gao, T. Zhang, Y. Zhou, Y. Zhang, M. G. Ju, J. Wang, X. C. Zeng, Angew. Chem. Int. Ed. 2023, 62, e202213386.
- 7R. Wang, J. Xue, K. L. Wang, Z. K. Wang, Y. Luo, D. Fenning, G. Xu, S. Nuryyeva, T. Huang, Y. Zhao, J. L. Yang, J. Zhu, M. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509–1513.
- 8C. Li, X. Wang, E. Bi, F. Jiang, S. M. Park, Y. Li, L. Chen, Z. Wang, L. Zeng, H. Chen, Y. Liu, C. R. Grice, A. Abudulimu, J. Chung, Y. Xian, T. Zhu, H. Lai, B. Chen, R. J. Ellingson, F. Fu, D. S. Ginger, Z. Song, E. H. Sargent, Y. Yan, Science 2023, 379, 690–694.
- 9S. Akin, N. Arora, S. M. Zakeeruddin, M. Grätzel, R. H. Friend, M. I. Dar, Adv. Energy Mater. 2020, 10, 1903090.
- 10Y. Bai, Y. Lin, L. Ren, X. Shi, E. Strounina, Y. Deng, Q. Wang, Y. Fang, X. Zheng, Y. Lin, Z.-G. Chen, Y. Du, L. Wang, J. Huang, ACS Energy Lett. 2019, 4, 1231–1240.
- 11M. Wang, H. Sun, M. Wang, L. Meng, L. Li, Adv. Mater. 2024, 36, e2306415.
- 12D. W. Dequilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, D. S. Ginger, Science 2015, 348, 683–686.
- 13L. Shi, M. P. Bucknall, T. L. Young, M. Zhang, L. Hu, J. Bing, D. S. Lee, J. Kim, T. Wu, N. Takamure, D. R. Mckenzie, S. Huang, M. A. Green, A. W. Y. Ho-Baillie, Science 2020, 368, eaba2412.
- 14G. Grancini, C. Roldan-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, Nat. Commun. 2017, 8, 15684.
- 15X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Grätzel, Energy Technol. 2015, 3, 551–555.
- 16K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. Mcmeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, M. D. Mcgehee, Nat. Energy 2017, 2, 17009.
- 17S. Zhou, S. Fu, C. Wang, W. Meng, J. Zhou, Y. Zou, Q. Lin, L. Huang, W. Zhang, G. Zeng, D. Pu, H. Guan, C. Wang, K. Dong, H. Cui, S. Wang, T. Wang, G. Fang, W. Ke, Nature 2023, 624, 69–73.
- 18P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle, C. M. Sutter-Fella, I. Yavuz, C. Yao, W. Fan, J. Xu, Y. Tian, D. Gu, K. Zhao, S. Tan, X. Zhang, L. Yao, P. J. Dyson, J. L. Slack, D. Yang, J. Xue, M. K. Nazeeruddin, Y. Yang, R. Wang, Nature 2023, 620, 323–327.
- 19J. Park, J. Kim, H.-S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2023, 616, 724–730.
- 20Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu, Y. Chen, K. Li, X. Niu, N. Li, G. Liu, Y. Zhang, H. Zai, Q. Chen, T. Lei, L. Wang, H. Zhou, Nature 2023, 623, 531–537.
- 21S. G. Motti, D. Meggiolaro, A. J. Barker, C. a. R. Perini, J. M. Ball, F. D. Angelis, A. Petrozza, M. Gandini, Nat. Photonics 2019, 13, 532–539.
- 22B. Liu, H. Bi, D. He, L. Bai, W. Wang, H. Yuan, Q. Song, P. Su, Z. Zang, T. Zhou, J. Chen, ACS Energy Lett. 2021, 6, 2526–2538.
- 23L. Zuo, H. Guo, D. W. Dequilettes, S. Jariwala, N. D. Marco, S. Dong, R. Deblock, D. S. Ginger, B. Dunn, M. Wang, Y. Yang, Sci. Adv. 2017, 3, e1700106.
- 24B. Niu, H. Wu, J. Yin, B. Wang, G. Wu, X. Kong, B. Yan, J. Yao, C.-Z. Li, H. Chen, ACS Energy Lett. 2021, 6, 3443–3449.
- 25X. Ji, X. Peng, Q. Wang, J. Ren, Z. Xiong, X. Yang, Org. Electron. 2018, 52, 350–355.
- 26Q. Cao, T. Wang, J. Yang, Y. Zhang, Y. Li, X. Pu, J. Zhao, H. Chen, X. Li, I. Tojiboyev, J. Chen, L. Etgar, X. Li, Adv. Funct. Mater. 2022, 32, 2201036.
- 27H. Dong, G. Shen, H. Fang, Y. Li, X. Gao, Q. Song, X. Xu, Y.i Wang, A. D. X. Cheng Mu, Adv. Funct. Mater. 2024, 34, 2402394.
- 28M. Yang, T. Tian, Y. Fang, W.-G. Li, G. Liu, W. Feng, M. Xu, W.-Q. Wu, Nat. Sustain. 2023, 6, 1455–1464.
- 29L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao, P. Sun, T. Huang, J. Xue, J. W. Lee, C. Zhu, Y. Huang, Y. Li, Y. Yang, J. Am. Chem. Soc. 2018, 140, 17255–17255.
- 30C. Tian, B. Li, Y. Rui, H. Xiong, Y. Zhao, X. Han, X. Zhou, Y. Qiu, W. An, K. Li, C. Hou, Y. Li, H. Wang, Q. Zhang, Adv. Funct. Mater. 2023, 33, 2302270.
- 31H. Zhang, Z. Chen, M. Qin, Z. Ren, K. Liu, J. Huang, D. Shen, Z. Wu, Y. Zhang, J. Hao, C. S. Lee, X. Lu, Z. Zheng, W. Yu, G. Li, Adv. Mater. 2021, 33, e2008487.
- 32F. Bella, G. Griffini, J. Correa-Baena, G. Saracco, M. Grätzel, A. H. S. Turri, C. Gerbaldi, Science 2016, 354, 203.
- 33X. Gong, H. Li, R. Zhou, X. Peng, Y. Ouyang, H. Luo, X. Liu, J. Zhuang, H. Wang, Y. Ni, Y. Lei, ACS Appl. Mater. Interfaces 2021, 13, 41149–41149.
- 34N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Nat. Energy 2019, 4, 408–415.
- 35Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460–466.
- 36Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu, X. Tang, J. Ding, H. Yang, Q. Cheng, Z. Chen, Y. Li, Y. Li, Joule 2023, 7, 398–415.
- 37M. Li, R. Sun, J. Chang, J. Dong, Q. Tian, H. Wang, Z. Li, P. Yang, H. Shi, C. Yang, Z. Wu, R. Li, Y. Yang, A. Wang, S. Zhang, F. Wang, W. Huang, T. Qin, Nat. Commun. 2023, 14, 573.
- 38S. You, F. T. Eickemeyer, J. Gao, J.-H. Yum, X. Zheng, D. Ren, M. Xia, R. Guo, Y. Rong, S. M. Zakeeruddin, K. Sivula, J. Tang, Z. Shen, X. Li, M. Grätzel, Nat. Energy 2023, 8, 515–525.
- 39S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, F. Ren, Q. Zhou, H. Raza, Y. Gao, Y. Ji, S. Li, H. Li, L. Qiu, W. Huang, Y. Zhao, B. Xu, Z. Liu, H. J. Snaith, N. G. Park, W. Chen, Nature 2024, 632, 536–542.
- 40H. Wang, C. Zhu, L. Liu, S. Ma, P. Liu, J. Wu, C. Shi, Q. Du, Y. Hao, S. Xiang, H. Chen, P. Chen, Y. Bai, H. Zhou, Y. Li, Q. Chen, Adv. Mater. 2019, 31, e1904408.
- 41C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 42H. Li, C. Zhang, C. Gong, D. Zhang, H. Zhang, Q. Zhuang, X. Yu, S. Gong, X. Chen, J. Yang, X. Li, R. Li, J. Li, J. Zhou, H. Yang, Q. Lin, J. Chu, M. Grätzel, J. Chen, Z. Zang, Nat. Energy 2023, 8, 946–955.
- 43L. Bi, Q. Fu, Z. Zeng, Y. Wang, F. R. Lin, Y. Cheng, H.-L. Yip, S. W. Tsang, A. K. Y. Jen, J. Am. Chem. Soc. 2023, 145, 5920–5929.
- 44H. Min, J. Chang, Y. Tong, J. Wang, F. Zhang, Z. Feng, X. Bi, N. Chen, Z. Kuang, S. Wang, L. Yuan, H. Shi, N. Zhao, D. Qian, S. Xu, L. Zhu, N. Wang, W. Huang, J. Wang, Nat. Photonics 2023, 17, 755–760.
- 45T. Huang, S. Tan, S. Nuryyeva, I. Yavuz, F. Babbe, Y. Zhao, M. Abdelsamie, M. H. Weber, R. Wang, K. N. Houk, C. M. Sutter-Fella, Y. Yang, Sci. Adv. 2021, 7, eabj1799.
- 46K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang, L. Li, T. Wu, Phys. Chem. Chem. Phys. 2014, 16, 22476–22481.
- 47G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum, Nat. Mater. 2014, 13, 476–480.
- 48F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu, S. Zhang, T. Wang, C. Tao, G. Fang, Adv. Mater. 2021, 33, e2007126.
- 49B. Subedi, C. Li, C. Chen, D. Liu, M. M. Junda, Z. Song, Y. Yan, N. J. Podraza, ACS Appl. Mater. Interfaces 2022, 14, 7796–7804.
- 50Y. Wu, Q. Wang, Y. Chen, W. Qiu, Q. Peng, Energy Environ. Sci. 2022, 15, 4700.
- 51H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. yang, Q. Zhou, A. S. R. Bati, H. Wan, Z. Wang, L. Zeng, J. Wang, P. Serles, Y. liu, S. Teale, Y. Liu, M. I. Saidaminov, M. Li, N. Rolston, S. Hoogland, T. Filleter, M. G. Kanatzidis, B. Chen, Z. Ning, E. H. Sargent, Science 2024, 384, 189–193.
- 52T. He, S. Li, Y. Jiang, C. Qin, M. Cui, L. Qiao, H. Xu, J. Yang, R. Long, H. Wang, M. Yuan, Nat. Commun. 2020, 11, 1672.
- 53C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao, X. Gao, Q. Zhao, Joule 2022, 6, 240–257.
- 54H. Zhu, B. Shao, Z. Shen, S. You, J. Yin, N. Wehbe, L. Wang, X. Song, M. Abulikemu, A. Basaheeh, A. Jamal, I. Gereige, M. Freitag, O. F. Mohammed, K. Zhu, O. M. Bakr, Nat. Photon. 2025, 19, 28–35.
- 55L. Shen, P. Song, K. Jiang, L. Zheng, J. Qiu, F. Li, Y. Huang, J. Yang, C. Tian, A. K. Y. Jen, L. Xie, Z. Wei, Nat. Commun. 2024, 15, 10908.
- 56C. Ma, M. F. Lo, C. S. Lee, Chem. Commun. 2018, 54, 5784–5787.
- 57M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. Von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo, J. M. Luther, Nat. Energy 2020, 5, 35–49.