Revisiting Photocatalytic CO2 Reduction to Methanol: A Perspective Focusing on Metal-Organic Frameworks
Vitor Fernandes de Almeida
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorCorresponding Author
Sergio Navalón
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorCorresponding Author
Amarajothi Dhakshinamoorthy
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
School of Chemistry, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Hermenegildo Garcia
Instituto de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
Search for more papers by this authorVitor Fernandes de Almeida
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorCorresponding Author
Sergio Navalón
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
Search for more papers by this authorCorresponding Author
Amarajothi Dhakshinamoorthy
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022 Spain
School of Chemistry, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Hermenegildo Garcia
Instituto de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
Search for more papers by this authorGraphical Abstract
Photocatalytic CO2 reduction to CH3OH, particularly using metal-organic framework (MOF) photocatalyst, has received considerable attention due to its long-term potential to harness sunlight for converting CO2 into this valuable fuel. This Perspective outlines the best practices that to provide robust and convincing evidence that CO2 is the source of CH3OH in the photocatalytic reactions.
Abstract
Photocatalytic CO2 reduction to CH3OH, particularly with metal-organic frameworks (MOFs) as photocatalysts, has garnered significant attention due to its long-term potential to harness sunlight for converting CO2 into a valuable fuel and chemical feedstock. Numerous studies in the literature report the successful formation of CH3OH from photocatalytic CO2 reduction, sometimes supplemented with sacrificial agents, with claims substantiated by isotopic labelling measurements. However, in this Scientific Perspective, we note that much of the existing evidence has not been obtained under sufficiently rigorous experimental conditions to conclusively confirm the formation of a highly reactive product like CH3OH from the chemically stable CO2 molecule. This Scientific Perspective outlines best practices designed to provide robust evidence for CH3OH formation in photocatalytic processes, which could be instrumental in clarifying the state-of-the-art and accelerating the development of this technology toward practical applications.
Conflict of Interests
The authors declare no conflict of interest.
References
- 1W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 2014, 26, 4607–4626.
- 2E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal, J. Pérez-Ramírez, Energy Environ. Sci. 2013, 6, 3112.
- 3X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 2016, 9, 2177–2196.
- 4X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2016, 45, 2603–2636.
- 5X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 2019, 119, 3962–4179.
- 6S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372–7408.
- 7C.-C. Yang, Y.-H. Yu, B. Van Der Linden, J. C. S. Wu, G. Mul, J. Am. Chem. Soc. 2010, 132, 8398–8406.
- 8T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982–5993.
- 9C. Karthikeyan, P. Arunachalam, K. Ramachandran, A. M. Al-Mayouf, S. Karuppuchamy, J. Alloys Compd. 2020, 828, 154281.
- 10S. Adabala, D. P. Dutta, J. Environ. Chem. Eng. 2022, 10, 107763.
- 11Y.-F. Xu, P. N. Duchesne, L. Wang, A. Tavasoli, F. M. Ali, M. Xia, J.-F. Liao, D.-B. Kuang, G. A. Ozin, Nat. Commun. 2020, 11, 5149.
- 12J. K. Stolarczyk, S. Bhattacharyya, L. Polavarapu, J. Feldmann, ACS Catal. 2018, 8, 3602–3635.
- 13J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Adv. Funct. Mater. 2018, 28, 1801983.
- 14H. C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lin, K. H. Chen, Nanoscale 2013, 5, 262–268.
- 15S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 2018, 28, 1800136.
- 16A. Dhakshinamoorthy, Z. Li, S. Yang, H. Garcia, Chem. Soc. Rev. 2024, 53, 3002–3035.
- 17X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Energy Environ. Sci. 2017, 10, 402–434.
- 18Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, J. Chen, Angew. Chem. Int. Ed. 2018, 57, 7610–7627.
- 19J. Ran, M. Jaroniec, S. Z. Qiao, Adv. Mater. 2018, 30, 1704649.
- 20I. Ganesh, Renew. Sustain. Energy Rev. 2014, 31, 221–257.
- 21K. Sun, Y. Qian, H. L. Jiang, Angew. Chem. Int. Ed. 2023, 62, e202217565.
- 22J. Dankar, C. Pagis, M. Rivallan, M. El-Roz, Sustain. Energy Fuels 2023, 7, 2819–2823.
- 23Y. Zhang, D. Yao, B. Xia, M. Jaroniec, J. Ran, S.-Z. Qiao, ACS Energy Lett. 2022, 7, 1611–1617.
- 24P. Christopher, S. Jin, K. Sivula, P. V. Kamat, ACS Energy Lett. 2021, 6, 707–709.
- 25I. Grigioni, M. V. Dozzi, M. Bernareggi, G. L. Chiarello, E. Selli, Catal. Today 2017, 281, 214–220.
- 26S. Navalon, A. Dhakshinamoorthy, M. Alvaro, B. Ferrer, H. Garcia, Chem. Rev. 2023, 123, 445–490.
- 27S. P. Shelake, D. N. Sutar, B. M. Abraham, T. Banerjee, A. V. S. Sainath, U. Pal, Adv. Funct. Mater. 2024, 34, 2403795.
- 28A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 2016, 55, 5414–5445.
- 29C.-C. Wang, X. Wang, W. Liu, Chem. Eng. J. 2020, 391, 123601.
- 30C.-C. Wang, X.-H. Yi, P. Wang, Appl. Catal. B: Environ. 2019, 247, 24–48.
- 31J.-L. Wang, C. Wang, W. Lin, ACS Catal. 2012, 2, 2630–2640.
- 32S. Wang, X. Wang, Small 2015, 11, 3097–3112.
- 33J. D. Xiao, H. L. Jiang, Acc. Chem. Res. 2019, 52, 356–366.
- 34Y. Zhang, H. Liu, F. Gao, X. Tan, Y. Cai, B. Hu, Q. Huang, M. Fang, X. Wang, EnergyChem 2022, 4, 100078.
- 35C. I. Ezugwu, S. Liu, C. Li, S. Zhuiykov, S. Roy, F. Verpoort, Coord. Chem. Rev. 2022, 450, 214245.
- 36N. Li, B. Wang, Y. Si, F. Xue, J. Zhou, Y. Lu, M. Liu, ACS Catal. 2019, 9, 5590–5602.
- 37P. Ganji, R. K. Chowdari, B. Likozar, Energy Fuels 2023, 37, 7577–7602.
- 38D. Duonghong, J. Ramsden, M. Grätzel, J. Am. Chem. Soc. 1982, 104, 2977–2985.
- 39J. R. Schoonover, T. J. Meyer, K. C. Gordon, W. H. Woodruff, K. A. Peterson, R. B. Dyer, R. Argazzi, C. A. Bignozzi, J. Am. Chem. Soc. 1993, 115, 10996–109971.
- 40C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363.
- 41S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, Top. Curr. Chem. 2007, 280, 117–214.
- 42T. J. Meyer, Pure Appl. Chem. 1986, 58, 1193–1206.
- 43J. A. G. Williams, Top. Curr. Chem. 2007, 281, 205–268.
- 44F. Juliá, ChemCatChem 2022, 14, e202200916.
- 45S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
- 46H. Furukawa, K. E. Cordova, M. O′Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 47A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Trends Chem. 2020, 2, 454–466.
- 48A. Dhakshinamoorthy, S. Navalon, A. Primo, H. Garcia, Angew. Chem. Int. Ed. 2024, 63, e202311241.
- 49Z. Liang, M. Marshall, A. L. Chaffee, Energy Fuels 2009, 23, 2785–2789.
- 50A. E. Amooghin, H. Sanaeepur, R. Luque, H. Garcia, B. Chen, Chem. Soc. Rev. 2022, 51, 7427–7508.
- 51A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, ChemCatChem 2020, 12, 4732–4753.
- 52C. G. Silva, I. Luz, F. X. Llabrés I Xamena, A. Corma, H. García, Chem. Eur. J. 2010, 16, 11133–11138.
- 53S.-L. Meng, C. Ye, X.-B. Li, C.-H. Tung, L.-Z. Wu, J. Am. Chem. Soc. 2022, 144, 16219–16231.
- 54M. A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 2014, 16, 4919–4926.
- 55N. Kolobov, M. G. Goesten, J. Gascon, Angew. Chem. Int. Ed. 2021, 60, 26038–26052.
- 56L. Dandan, X.-H. Qun, J. Long, H.-L. Jiang, EnergyChem 2019, 1, 100005.
10.1016/j.enchem.2019.100005 Google Scholar
- 57M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés I Xamena, H. Garcia, Chem. Eur. J. 2007, 13, 5106–5112.
- 58A. S. Portillo, H. G. Baldoví, M. T. G. Fernandez, S. Navalón, P. Atienzar, B. Ferrer, M. Alvaro, H. Garcia, Z. Li, J. Phys. Chem. C 2017, 121, 7015–7024.
- 59A. Melillo, M. Cabrero-Antonino, S. Navalón, M. Álvaro, B. Ferrer, H. García, Appl. Catal. B: Environ. 2020, 278, 119345.
- 60S. M. Moosavi, A. Nandy, K. M. Jablonka, D. Ongari, J. P. Janet, P. G. Boyd, Y. Lee, B. Smit, H. J. Kulik, Nat. Commun. 2020, 11, 4068.
- 61M. Li, D. Li, M. O′Keeffe, O. M. Yaghi, Chem. Rev. 2014, 114, 1343–1370.
- 62S. M. Cohen, Chem. Rev. 2012, 112, 970–1000.
- 63R. E. Morris, P. S. Wheatley, Angew. Chem. Int. Ed. 2008, 47, 4966–4981.
- 64J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504.
- 65A. Corma, H. García, F. X. Llabrés I Xamena, Chem. Rev. 2010, 110, 4606–4655.
- 66Y. Liu, C. Wang, Q. Yang, Q. Ren, Z. Bao, Coord. Chem. Rev. 2025, 523, 216229.
- 67S. Kumar, R. Muhammad, A. Amhamed, H. Oh, Coord. Chem. Rev. 2025, 522, 216230.
- 68G. F. Hassan, N. El Hoda Saad, M. Hmadeh, P. Karam, Dalton Trans. 2018, 47, 15765–15771.
- 69L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649–13657.
- 70D. Mateo, A. Santiago-Portillo, J. Albero, S. Navalon, M. Alvaro, H. García, Angew. Chem. Int. Ed. 2019, 58, 17843–17848.
- 71F. Liu, I. Rincón, H. G. Baldoví, A. Dhakshinamoorthy, P. Horcajada, S. Rojas, S. Navalón, A. Fateeva, Inorg. Chem. Front. 2024, 11, 2212–2245.
- 72H. L. Nguyen, Adv. Mater. 2022, 34, 2200465.
- 73T. Le Huec, A. López-Francés, I. Abánades Lázaro, S. Navalon, H. G. Baldoví, M. Giménez-Marqués, ACS Nano 2024, 18, 20201–20212.
- 74K. Sun, Y. Huang, F. Sun, Q. Wang, Y. Zhou, J. Wang, Q. Zhang, X. Zheng, F. Fan, Y. Luo, J. Jiang, H.-L. Jiang, Nat. Chem. 2024, 16, 1638–1646.
- 75H. Hu, Z. Wang, L. Cao, L. Zeng, C. Zhang, W. Lin, C. Wang, Nat. Chem. 2021, 13, 358–366.
- 76A. Angulo-Ibáñez, M. Perfecto-Irigaray, I. Merino-Garcia, N. Luengo, A. M. Goitandia, J. Albo, E. Aranzabe, G. Beobide, O. Castillo, S. Pérez-Yáñez, Mater. Today Energy 2022, 30, 101178.
- 77M. Perfecto-Irigaray, I. Merino-Garcia, J. Albo, G. Beobide, O. Castillo, A. Luque, S. Pérez-Yáñez, Mater. Today Energy 2023, 36, 101346.
- 78M. Nemiwal, V. Subbaramaiah, T. C. Zhang, D. Kumar, Sci. Total Environ. 2021, 762, 144101.
- 79Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Adv. Mater. 2018, 30, 1702891.
- 80D. Li, M. Kassymova, X. Cai, S.-Q. Zang, H.-L. Jiang, Coord. Chem. Rev. 2020, 412, 213262.
- 81Y.-C. Wang, X.-Y. Liu, X.-X. Wang, M.-S. Cao, Chem. Eng. J. 2021, 419, 129459.
- 82H. L. Nguyen, Solar RRL 2021, 5, 2100198.
- 83A. Dey, F. A. Rahimi, P. Verma, S. Suresh, T. K. Maji, ACS Appl. Energy Mater. 2023, 6, 9179–9187.
- 84A. Das, N. Anbu, M. SK, A. Dhakshinamoorthy, S. Biswas, Inorg. Chem. 2019, 58, 5163–5172.
- 85N. Ud Din Mir, V. Karthik, K. Abirami Sundari, A. Dhakshinamoorthy, S. Biswas, Chem. Asian J. 2024, 19, e202400274.
- 86Q. Wang, K. Domen, Chem. Rev. 2020, 120, 919–985.
- 87L. Chang, S.-T. Yong, S.-P. Chai, L. K. Putri, L.-L. Tan, A. R. Mohamed, Mater. Today Chem. 2023, 27, 101334.
- 88Z. Liu, J. Li, Z. Chen, M. Li, L. Wang, S. Wu, J. Zhang, Appl. Catal. B: Environ. 2023, 326, 122338.
- 89Y. Chen, D. Wang, X. Deng, Z. Li, Catal. Sci. Technol. 2017, 7, 4893–4904.
- 90Y. Liu, Y. Yang, Q. Sun, Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 7654–7658.
- 91M. Hu, J. Liu, S. Song, W. Wang, J. Yao, Y. Gong, C. Li, H. Li, Y. Li, X. Yuan, Z. Fang, H. Xu, W. Song, Z. Li, ACS Catal. 2022, 12, 3238–3248.
- 92K. Wu, C. Liu, Y. Chen, H. Jiang, Q. Peng, Y. Chen, D. Fang, B. Shen, Q. Wu, L. Zhan, W. Sun, W. Di, H. Sun, Appl. Catal. A: Gen. 2023, 650, 118970.
- 93J. W. Maina, J. A. Schutz, L. Grundy, E. Des Ligneris, Z. Yi, L. Kong, C. Pozo-Gonzalo, M. Ionescu, L. F. Dumee, ACS Appl. Mater. Interfaces 2017, 9, 35010–35017.
- 94J. Becerra, D.-T. Nguyen, V.-N. Gopalakrishnan, T.-O. Do, ACS Appl. Energy Mater. 2020, 3, 7659–7665.
- 95C. Hu, Z. Jiang, Q. Wu, S. Cao, Q. Li, C. Chen, L. Yuan, Y. Wang, W. Yang, J. Yang, J. Peng, W. Shi, M. Zhai, M. Mostafavi, J. Ma, Nat. Commun. 2023, 14, 4767.
- 96S. Dai, T. Kajiwara, M. Ikeda, I. Romero-Muñiz, G. Patriarche, A. E. Platero-Prats, A. Vimont, M. Daturi, A. Tissot, Q. Xu, C. Serre, Angew. Chem. Int. Ed. 2022, 61, e202211848.
- 97X. Liu, C. Zhu, M. Li, H. Xing, S. Zhu, X. Liu, G. Zhu, Angew. Chem. Int. Ed. 2024, 63, e202412408.
- 98N. Li, X. Liu, J. Zhou, W. Chen, M. Liu, Chem. Eng. J. 2020, 399, 125782.
- 99R. Manna, G. Bhattacharya, P. Sardar, S. Raj, A. Jain, A. N. Samanta, Chem. Eng. Sci. 2024, 288, 119811.
- 100J. O. Olowoyo, U. Saini, M. Kumar, H. Valdés, H. Singh, M. O. Omorogie, J. O. Babalola, A. V. Vorontsov, U. Kumar, P. G. Smirniotis, J. CO2 Util. 2020, 42, 101300.
- 101R. Manna, G. Bhattacharya, S. Raj, A. N. Samanta, J. Environ. Chem. Eng. 2024, 12, 111722.
- 102R. Manna, S. Rahut, A. N. Samanta, Mater. Today Energy 2023, 35, 101326.
- 103R. Manna, G. Bhattacharya, P. Sardar, S. Rahut, A. N. Samanta, Renew. Energy 2024, 229, 120752.