In Situ Growth of Metal-Organic Layer on Polyoxometalate-etching Cu2O to Boost CO2 Reduction with High Stability
Yu-Jie Wang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Jilin, 130024 China
Search for more papers by this authorXin Cheng
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorDr. Na-Na Ma
Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorWei-Yi Cheng
Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorPeng Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Fang Luo
Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Jilin, 130024 China
Search for more papers by this authorProf. Wen-Xiong Shi
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Shuang Yao
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Tong-Bu Lu
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Ming Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorYu-Jie Wang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Jilin, 130024 China
Search for more papers by this authorXin Cheng
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorDr. Na-Na Ma
Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorWei-Yi Cheng
Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007 China
Search for more papers by this authorPeng Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Fang Luo
Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Jilin, 130024 China
Search for more papers by this authorProf. Wen-Xiong Shi
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Shuang Yao
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Tong-Bu Lu
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Ming Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorGraphical Abstract
POM-etching for in situ growth of metal-organic layer can simultaneously incorporate electron sponge and protective layer into Cu2O. The resulting ternary composites exhibit exceptional robustness and achieve efficient CO2 conversion to HCOOH with a yield 55 times higher than that of binary Cu2O@HKUST.
Abstract
Low-cost Cu2O with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO2 capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)-etching and in situ growth of metal–organic framework (MOF) can simultaneously incorporate electron-sponge and HKUST protective layer into Cu2O. The resulting ternary composites Cu2O@POM@HKUST-n (POM=PMo12O40 and PW12O40) with dual hetero-interfaces can efficiently convert CO2 to HCOOH with 5226 μmol g−1 yield, over 5 and 55 times higher than that of Cu2O (1010 μmol g−1) and Cu2O@HKUST (95.02 μmol g−1). In situ XPS and DFT studies reveal that Cu mainly existed in the form of Cu2O and Cu-MOF, while a unique Cux+ (1<x≤2) surface layer formed upon the Cu2O matrix surrounding POMs for CO2 absorption and activation. Systematic investigations demonstrate that the electron-sponge can efficiently capture electrons from excited Cu2O to promote the generation of a Cux+ surface layer, while the closely surface-coating metal-organic layer can act as protective layer and CO2 adsorbent. This dual function concurrently contributes to promote photocatalysis and prevent Cu2O degradation. Remarkably, the composites exhibit much enhanced photochemical stability and can be used for over 60 h without noticeable activity loss.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202423204-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Hepburn, E. Adlen, J. Beddington, E.-A. Carter, Fuss, S.-N. Mac Dowell, J.-C. Minx, P. Smith, C.-K. Williams, Nature 2019, 575, 87–97.
- 2H.-Q. Yin, Z.-M. Zhang, T.-B. Lu, Acc. Chem. Res. 2023, 56(19), 2676–2687.
- 3Z. Jiang, X. Xu, Y. Ma, H. S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Nature 2020, 586, 549–554.
- 4S.-Y. Wang, B. Jiang, J. Henzie, F.-Y. Xu, C.-Y. Liu, X.-G Meng, S.-R. Zou, H. Song, Y. Pan, H.-X. Li, J.-G. Yu, H. Chen, J.-H. Ye, Nat. Commun. 2023, 14, 2534
- 5Y.-A. Wu, I. McNulty, C. Liu, K.-C. Lau, Q. Liu, A.-P. Paulikas, C.-J. Sun, Z. Cai, J.-R. Guest, Y. Ren, V. Stamenkovic, L. A. Curtiss, Y. Liu, T. Rajh, Nat. Energy 2019, 4, 957–968.
- 6N.-Y. Huang, J.-Q. Shen, X.-W. Zhang, P.-Q. Liao, J.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2022, 144(19), 8676–8682.
- 7P. M. Stanley, V. Ramm, R. A. Fischer, J. Warnan, Nat. Syn. 2024, 3, 307–318.
- 8P. Liu, Z. Huang, X. Gao, X. Hong, J. Zhu, G. Wang, Y. Wu, J. Zeng, X. Zheng, Adv. Mater. 2022, 34(16), 2200057.
- 9S. Saha, G. Das, J. Thote, R. Banerjee, J. Am. Chem. Soc. 2014, 136(42), 14845–14851.
- 10L. Pan, L. Dai, O. J. Burton, L. Chen, V. Andrei, Y. Zhang, D. Ren, J. Cheng, L. Wu, K. Frohna, A. Abfalterer, T. C.-J. Yang, W. Niu, M. Xia, S. Hofmann, P.-J. Dyson, E. Reisner, H. Sirringhaus, J. Luo, A. Hagfeldt, M. Grätzel, S.-D. Stranks, Nature 2024, 628, 765–770.
- 11Y. Wang, G. Fan, S. Wang, Y. Li, Y. Guo, D. Luan, X. Gu, X.-W. Lou, Adv. Mater. 2022, 34(42), 2204865.
- 12Y. Zhang, X. Zhi, J.-R. Harmer, H. Xu, K. Davey, J. Ran, S.-Z. Qiao, Angew. Chem. Int. Ed. 2022, 61, e202212355.
- 13E. Pastor, M. Sachs, S. Selim, J. R. Durrant, A.-A. Bakulin, A. Walsh, Nat. Rev. Mater. 2022, 7, 503–521.
- 14J. Wu, F. Huang, Q. Hu, D. He, W. Liu, X. Li, W. Yan, J. Hu, J. Zhu, S. Zhu, Q. Chen, X. Jiao, Y. Xie, J. Am. Chem. Soc. 2024, 146, 26478–26484.
- 15T. Wang, K. Deng, H. Huo, C. Huang, Y. Du, M. Yu, J. Ma, E. Kan, A. Li, ACS Catal. 2024, 14, 8748–8757.
- 16X. Chang, T. Wang, Z.-J. Zhao, P. Yang, J. Greeley, R. Mu, G. Zhang, Z. Gong, Z. Luo, J. Chen, Y. Cui, G. A. Ozin, J. Gong, Angew. Chem. Int. Ed. 2018, 57(47), 15415–15419.
- 17K. Sekar, C. Chuaicham, B. Vellaichamy, W. Li, W. Zhuang, X. Lu, B. Ohtani, K. Sasaki, Appl. Catal. B 2021, 294(5), 120221.
- 18A.-L. Gu, Y.-X. Zhang, Z.-L. Wu, H.-Y. Cui, T.-D. Hu, B. Zhao, Angew. Chem. Int. Ed. 2022, 61(19), e202114817.
- 19R. Chen, Z. Ren, Y. Liang, G. Zhang, T. Dittrich, R. Liu, Y. Liu, Y. Zhao, S. Pang, H. An, C. Ni, P. Zhou, K. Han, F. Fan, C. Li, Nature 2022, 610, 296–301.
- 20G. Liu, F. Zheng, J. Li, G. Zeng, Y. Ye, D.-M. Larson, J. Yano, E. J. Crumlin, J. W. Ager, L. W. Wang, F. Toma, Nat. Energy 2021, 6, 1124–1132.
- 21K. Sun, Y. Qian, H.-L. Jiang, Angew. Chem. Int. Ed. 2023, 62(15), e202217565.
- 22S. Guo, L.-H. Kong, P. Wang, S. Yao, T.-B. Lu, Z.-M. Zhang, Angew. Chem. Int. Ed. 2022, 61(19), e202206193.
- 23T.-C. Zhuo, Y. Song, G.-L. Zhuang, L.-P. Chang, S. Yao, W. Zhang, Y. Wang, P. Wang, W. Lin, T.-B. Lu, Z.-M. Zhang, J. Am. Chem. Soc. 2021, 143(16), 6114–6122.
- 24K. Sun, Y. Huang, F. Sun, Q. Wang, Y. Zhou, J. Wang, Q. Zhang, Z. Zheng, F. Fan, Y. Luo, J. Jiang, H.-L. Jiang, Nat. Chem. 2024, 16, 1638–1646.
- 25H. Wu, X. Y. Kong, X. Wen, S.-P. Chai, E.-C. Lovell, J. Tang, Y.-H. Ng, Angew. Chem. Int. Ed. 2021, 60(15), 8455–8459.
- 26J.-D. Yi, R. Xie, Z.-L. Xie, G.-L. Chai, T.-F. Liu, R.-P. Chen, Y.-B. Huang, R. Cao, Angew. Chem. Int. Ed. 2020, 59(52), 23641–23648.
- 27R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, Adv. Mater. 2014, 26(28), 4783–4788.
- 28X. Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 2019, 141(27), 10924–10929.
- 29B. Li, J. G. Ma, P. Cheng, Angew. Chem. Int. Ed. 2018, 57(23), 6834–6837.
- 30C. Liu, M. Wang, J. Ye, L. Liu, L. Li, Y. Li, X. Huang, Nano Lett. 2023, 23(4), 1474–1480.
- 31W.-W. Zhan, Q. Kuang, J.-Z. Zhou, X.-J. Kong, Z.-X. Xie, L.-S. Zheng, J. Am. Chem. Soc. 2013, 135(5), 1926–1933.
- 32J.-W. Yoon, D.-H. Kim, J.-H. Kim, H.-W. Jang, J.-H. Lee, Appl. Catal. B 2019, 244, 511–518.
- 33F. Dai, M. Zhang, J. Han, Z. Li, S. Feng, J. Xing, L. Wang, Nano Res. 2024, 17, 1259–1266.
- 34S. Li, Y. Ma, Y. Zhao, R. Liu, Y. Zhao, X. Dai, N. Ma, C. Streb, X. Chen, Angew. Chem. Int. Ed. 2023, 62, e202314999.
- 35L.-L. Liu, L. Wang, X.-Y. Xiao, P. Yang, J. Zhao, U. Kortz, Coord. Chem. Rev. 2024, 506, 215687.
- 36T. Minato, D. Salley, N. Mizuno, K. Yamaguchi, L. Cronin, K. Suzuki, J. Am. Chem. Soc. 2021, 143, 12809–12816.
- 37L.-H. Hong, S.-N. Yue, X. Huang, C. Sun, P.-W. Cai, Y.-Q. Sun, X.-X. Li, S.-T. Zheng, Angew. Chem. Int. Ed. 2024, 63, e202404314.
- 38F. Zhao, T. Cheng, X. Lu, N. Ghorai, Y. Yang, Y.-V. Geletii, D.-G. Musaev, C.-L. Hill, T. Lian, J. Am. Chem. Soc. 2024, 146, 14600–14609.
- 39Y.-S. Xia, L. Zhang, J.-N. Lu, X.-H. Zhao, L.-Z. Dong, J. Liu, Y.-Q. Lan, Nat. Syn. 2024, 3, 406–418.
- 40X. Cao, Y. Ding, D. Chen, W. Ye, W. Yang, L. Sun, J. Am. Chem. Soc. 2024, 146, 25125–25136.
- 41Q. Shen, J. Chen, X. Jing, C. Duan, ACS Catal. 2023, 13, 9969–9978.
- 42S.-Y. Xu, W. Shi, J.-R. Huang, S. Yao, C. Wang, T.-B. Lu, Z.-M. Zhang, Angew. Chem. Int. Ed. 2024, 63, e202406223.
- 43F.-Y. Yu, Z.-L. Lang, L.-Y. Yin, K. Feng, Y.-J. Xia, H.-Q. Tan, H.-T. Zhu, J. Zhong, Z.-H. Kang, Y.-G. Li, Nat. Commun. 2020, 11, 490.
- 44J. Ren, B. Wang, H.-Q. Yin, P. Zhang, X.-H. Wang, Y. Quan, S. Yao, T.-B. Lu, Z.-M. Zhang, Adv. Mater. 2024, 36, 2403101.
- 45Z.-M. Zhang, S. Yao, Y.-G. Li, R. Clérac, Y. Lu, Z.-M. Su, E.-B. Wang, J. Am. Chem. Soc. 2009, 131, 14600–14601.
- 46Z.-M. Zhang, T. Zhang, C. Wang, Z. Lin, L.-S. Long, W. Lin, J. Am. Chem. Soc. 2015, 137, 3197–3200.
- 47M. Ye, X. Wu, C. Li, B. Song, X. Ma, S. Liu, Adv. Sustainable Syst. 2022, 6(10), 2200272.
- 48M. Yuan, C.-Y. Sun, Y.-W. Liu, Y. Lu, Z. Zhang, X.-H. Li, H.-R. Tian, S. Zhang, S.-X. Liu, J. Chem. Educ. 2020, 97(11), 4152–4157.
- 49C.-Y. Sun, S.-X. Liu, D.-D. Liang, K.-Z. Shao, Y.-H. Ren, Z.-M. Su, J. Am. Chem. Soc. 2009, 131(5), 1883–1888.
- 50Y. Zhang, Y. Chen, X. Wang, Y. Feng, H. Zhang, G. Zhang, Angew. Chem. Int. Ed. 2023, 62(26), e202302241.
- 51L. Xie, Y. Cai, Y. Jiang, M. Shen, J. C.-H. Lam, J.-J. Zhu, W. Zhu, Nat. Commun. 2024, 15, 10386.
- 52Z.-Y. Tian, L.-H. Kong, Y. Wang, H.-J. Wang, Y.-J. Wang, S. Yao, T.-B. Lu, Z.-M. Zhang, Small 2021, 17(44), 2103558.
- 53Y. Wu, X. Li, H. Zhao, F. Yao, J. Cao, Z. Chen, D. Wang, Q. Yang, Chem. Eng. J. 2021, 426. 131255.
- 54S. Yao, B.-Q. Sun, P. Zhang, Z.-Y. Tian, H.-Q. Yin, Z.-M. Zhang, Appl. Catal. B 2022, 317, 121702.
- 55L. Wan, Q. Zhou, X. Wang, T.-E. Wood, L. Wang, P.-N. Duchesne, J. Guo, X. Yan, M. Xia, Y.-F. Li, F.-M. Ali, Nat. Catal. 2019, 2, 889–898.
- 56J.-W. Jordan, J.-M. Cameron, G.-A. Lowe, G.-A. Rance, K.-L. Y. Fung, L.-R. Johnson, D.-A. Walsh, A.-N. Khlobystov, G.-N. Newton, Angew. Chem. Int. Ed. 2022, 61(8), e202115619.
- 57A. Ebrahimi, L. Krivosudský, A. Cherevan, D. Eder, Coord. Chem. Rev. 2024, 508, 215764.
- 58X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy. 2019, 4, 690–699.