Organic-Free Synthesis of High-Silica Zeolite Y with Aluminophosphate as the Aluminum Carrier
Qingdi Zhao
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
These authors contributed equally to this work.
Search for more papers by this authorJiejie Ling
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jilong Wang
State Key Laboratory of Petroleum Molecular and Process Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road, Shanghai 200062, China
These authors contributed equally to this work.
Search for more papers by this authorYan Gao
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
Search for more papers by this authorHailang Liu
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
Search for more papers by this authorZhenghan Zhang
State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Search for more papers by this authorDr. Jingang Jiang
State Key Laboratory of Petroleum Molecular and Process Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road, Shanghai 200062, China
Search for more papers by this authorProf. Akira Nakayama
Department of Chemical System Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Search for more papers by this authorCorresponding Author
Prof. Jian Li
State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Search for more papers by this authorCorresponding Author
Prof. Koki Muraoka
Department of Chemical System Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Search for more papers by this authorCorresponding Author
Prof. Peng Wu
State Key Laboratory of Petroleum Molecular and Process Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road, Shanghai 200062, China
Search for more papers by this authorCorresponding Author
Prof. Le Xu
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
Suzhou Laboratory, Suzhou 210023, China
Search for more papers by this authorQingdi Zhao
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
These authors contributed equally to this work.
Search for more papers by this authorJiejie Ling
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jilong Wang
State Key Laboratory of Petroleum Molecular and Process Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road, Shanghai 200062, China
These authors contributed equally to this work.
Search for more papers by this authorYan Gao
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
Search for more papers by this authorHailang Liu
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
Search for more papers by this authorZhenghan Zhang
State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Search for more papers by this authorDr. Jingang Jiang
State Key Laboratory of Petroleum Molecular and Process Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road, Shanghai 200062, China
Search for more papers by this authorProf. Akira Nakayama
Department of Chemical System Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Search for more papers by this authorCorresponding Author
Prof. Jian Li
State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Search for more papers by this authorCorresponding Author
Prof. Koki Muraoka
Department of Chemical System Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Search for more papers by this authorCorresponding Author
Prof. Peng Wu
State Key Laboratory of Petroleum Molecular and Process Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road, Shanghai 200062, China
Search for more papers by this authorCorresponding Author
Prof. Le Xu
State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University 30 South Puzhu Road, Nanjing 211816, China
Suzhou Laboratory, Suzhou 210023, China
Search for more papers by this authorGraphical Abstract
Aluminum Carrier for High-Silica Zeolite Synthesis. Inspired by the kinetical-controlled drug delivery, a unique approach based on the controlled aluminum-incorporation mechanism is proposed to synthesize the most siliceous zeolite Y under organic-free condition. The introduction of aluminophosphate as Al carrier regulates crystallization kinetics of zeolite Y, which exhibits an improved hydrothermal stability and catalytic performance in benchmark reaction.
Abstract
The wide application of zeolite Y in petrochemical industry is well-known as one of the milestones in zeolite chemistry and heterogeneous catalysis. However, the traditional organic-free synthesis typically produces (hydro)thermally unstable zeolite Y with Si/Al atomic ratio (SAR) less than 2.5. Inspired by drug delivery process in which active components are kinetically controlled released, we develop a unique approach based on the pre-synthesized aluminum carrier to prepare one of the most siliceous zeolite Y with SAR up to 3.44 without using organics. The crystalline or amorphous aluminophosphates serve as the ideal carrier for the controlled incorporation of Al into zeolite framework during zeolite Y crystallization. Experimental and theoretical results reveal that the partial introduction of aluminophosphate as Al source would rationally regulate the crystallization kinetics, facilitating the formation of high-silica zeolite Y with random Al distribution. This approach enhances the hydrothermal stability and catalytic performance of zeolite Y in benchmark reaction.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202420080-sup-0001-misc_information.pdf5.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Martínez, A. Corma, Coord. Chem. Rev. 2011, 255, 1558–1580;
- 1bQ. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 2011, 4, 42–55;
- 1cM. A. Snyder, M. Tsapatsis, Angew. Chem. Int. Ed. 2007, 46, 7560–7573;
- 1dM. E. Davis, Nature 2002, 417, 813–821;
- 1eL. Tosheva, V. Valtchev, Chem. Mater. 2005, 17, 2494–2513;
- 1fA. Corma, J. Catal. 2003, 216, 298–312;
- 1gY. Li, J. Yu, Chem. Rev. 2014, 114, 7268–7316;
- 1hM. Dusselier, M. E. Davis, Chem. Rev. 2018, 118, 5265–5329;
- 1iJ. Cĕjka, A. Corma, S. I. Zones, Zeolites and Catalysis, Wiley-VCH, Weinheim, 2010.
- 2
- 2aA. Vjunov, J. L. Fulton, T. Huthwelker, S. Pin, D. Mei, G. K. Schenter, N. Govind, D. M. Camaioni, J. Z. Hu, J. A. Lercher, J. Am. Chem. Soc. 2014, 136, 8296–8306;
- 2bJ. Dĕdeček, Z. Sobalík, B. Wichterlová, Catal. Rev. 2012, 54, 135–223;
- 2cS. Sklenak, J. Dĕdeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, Angew. Chem. Int. Ed. 2007, 46, 7286–7289;
- 2dK. Muraoka, W. Chaikittisilp, T. Okubo, J. Am. Chem. Soc. 2016, 138, 6184–6193;
- 2eY. Sada, S. Miyagi, K. Iyoki, M. Yoshioka, T. Ishikawa, Y. Naraki, T. Sano, T. Okubo, T. Wakihara, Microporous Mesoporous Mater. 2022, 344, 112196;
- 2fJ. R. D. Iorio, S. Li, C. B. Jones, C. T. Nimlos, Y. Wang, E. Kunkes, V. Vattipalli, S. Prasad, A. Moini, W. F. Schbeider, R. Gounder, J. Am. Chem. Soc. 2020, 142, 4807–4819;
- 2gJ. R. D. Iorio, R. Gounder, Chem. Mater. 2016, 28, 2236–2247.
- 3C. Baerlocher, Database of zeolite structures, https://www.iza-structure.org/databases/ (2024).
- 4
- 4aQ. Lin, Z. Gao, C. Lin, S. Zhang, J. Chen, Z. Li, X. Liu, W. Fan, J. Li, X. Chen, M. A. Camblor, F. Chen, Science 2021, 374, 1605–1608;
- 4bH. Lee, J. Shin, K. Lee, H. J. Choi, A. Mayoral, N. Y. Kang, S. B. Hong, Science 2021, 373, 104–107;
- 4cJ. Wang, X. Ren, Q. Xiang, J. Jiang, F. Wang, Y. Guan, H. Xu, P. Wu, J. Am. Chem. Soc. 2024, 146, 18418–18426;
- 4dD. Zhu, L. Wang, D. Fan, S. Xu, P. Guo, M. Yang, J. Zhang, P. Tian, Z. Liu, Adv. Mater. 2020, 32, 2000272;
- 4eD. Zhu, L. Wang, W. Zhang, D. Fan, J. Li, W. Cui, S. Huang, S. Xu, P. Tian, Z. Liu, Angew. Chem. Int. Ed. 2022, 23, e202117698;
- 4fM. Ye, J. Hu, K. Fan, W. Chen, S. Han, Q. Wu, Y. Ma, A. Zheng, E. Kunkes, T. D. Baerdemaeker, A. N. Parvulescu, N. Bottke, T. Yokoi, D. E. D. Vos, X. Meng, F. Xiao, J. Am. Chem. Soc. 2023, 145, 17284–17291.
- 5
- 5aX. Meng, F. Xiao, Chem. Rev. 2014, 114, 1521–1543;
- 5bK. Itabashi, Y. Kamimura, K. Iyoki, A. Shimojima, T. Okubo, J. Am. Chem. Soc. 2012, 134, 11542–11549;
- 5cQ. Wu, X. Wang, G. Qi, Q. Guo, S. Pan, X. Meng, J. Xu, F. Deng, F. Fan, Z. Feng, C. Li, S. Maurer, U. Muller, F. Xiao, J. Am. Chem. Soc. 2014, 136, 4019–4025;
- 5dJ. Shin, D. Jo, S. B. Hong, Acc. Chem. Res. 2019, 52, 1419–1427;
- 5eA. J. Mallette, G. Espindola, N. Varghese, J. D. Rimer, Chem. Sci. 2024, 15, 573–585;
- 5fG. A. Nasser, O. Muraza, T. Nishitoba, Z. Malaibari, T. K. Al-Shammari, T. Yokoi, Microporous Mesoporous Mater. 2019, 274, 277–285;
- 5gJ. Zhu, Z. Liu, A. Endo, Y. Yanaba, T. Yoshikawa, T. Wakihara, T. Okubo, React. Chem. Eng. 2018, 3, 844–848.
- 6
- 6aM. Maldonado, M. D. Oleksiak, S. Chinta, J. D. Rimer, J. Am. Chem. Soc. 2013, 135, 2641–2652;
- 6bJ. Šefčík, A. V. McCormick, Chem. Eng. Sci. 1999, 54, 3513–3519.
- 7
- 7aM. D. Oleksiak, J. D. Rimer, Rev. Chem. Eng. 2014, 30, 1–49;
- 7bM. Khaleel, W. Xu, D. A. Lesch, M. Tsapatsis, Chem. Mater. 2016, 28, 4204–4213.
- 8
- 8aC. S. Cundy, P. A. Cox, Chem. Rev. 2003, 103, 663–701;
- 8bM. T. Conato, M. D. Oleksiak, B. P. McGrail, R. K. Motkuri, J. D. Rimer, Chem. Commun. 2015, 51, 269–272.
- 9Y. Li, J. Yu, Chem. Rev. 2014, 114, 7268–7316.
- 10W. Vermeiren, J. P. Gilson, Top. Catal. 2009, 52, 1131–1161.
- 11
- 11aR. M. Milton (Union Carbide Corporation), U. S. Patent 2, 882, 244, 1959;
- 11bD. W. Breck, W. G. Eversole, R. M. Milton, J. Am. Chem. Soc. 1956, 78, 2338–2339.
- 12
- 12aD. W. Breck (Union Carbide Corporation), U. S. Patent 3,130,007, 1964;
- 12bP. K. Maher, E. W. Albers, C. V. McDaniel (W. R. Grace & Co.), U. S. Patent 3,671,191, 1972;
- 12cD. A. Young, U. S. Patent 3,691,099, 1972;
- 12dW. L. Haden, F. J. Dzeirzanowski (Engelhard Minerals & Chemicals Corporation), U. S. Patent 3,663,165, 1968.
- 13
- 13aB. Xu, S. Bordiga, R. Prins, J. A. van Bokhoven, Appl. Catal. A. 2007, 333, 245–253;
- 13bS. M. Babitz, B. A. Williams, J. T. Miller, R. Q. Snurr, W. O. Haag, H. H. Kung, Appl. Catal. A 1999, 179, 71–86;
- 13cM. A. Camblor, A. Corma, A. Martínez, F. A. Mocholí, J. P. Pariente, Appl. Catal. 1989, 55, 65–74;
- 13dH. Awala, J. P. Gilson, R. Retoux, P. Boullay, J. M. Goupil, V. Valtchev, S. Mintova, Nat. Mater. 2015, 14, 447–451;
- 13eS. Mintova, N. Barrier, Verified Syntheses of Zeolitic Materials, Synthesis commission, International Zeolite Association, 2016.
- 14
- 14aG. T. Kerr, J. Phys. Chem. 1968, 72, 2594–2596;
- 14bZ. Qin, W. Shen, S. Zhou, Y. Shen, C. Li, P. Zeng, B. Shen, Microporous Mesoporous Mater. 2020, 303, 110248.
- 15
- 15aZ. Qin, K. A. Cychosz, G. Melinte, H. E. Siblani, J. P. Gilson, M. Thommes, C. Fernandez, S. Mintova, O. Ersen, V. Valtchev, J. Am. Chem. Soc. 2017, 139, 17273–17276;
- 15bH. Kacirek, H. Lechert, J. Phys. Chem. 1976, 80, 1291–1296.
- 16M. D. Oleksiak, K. Muraoka, M. F. Hsieh, M. T. Conato, A. Shimojima, T. Okubo, W. Chaikittisilp, J. D. Rimer, Angew. Chem. Int. Ed. 2017, 56, 13366–13371.
- 17X. Li, H. Han, N. Evangelou, N. J. Wichrowski, P. Lu, W. Xu, S. J. Hwang, W. Zhao, C. Song, X. Guo, A. Bhan, I. G. Kevrekidis, M. Tsapatsis, Nat. Commun. 2023, 14, 3152.
- 18J. Wang, P. Liu, M. Boronat, P. Ferri, Z. Xu, P. Liu, B. Shen, Z. Wang, J. Yu, Angew. Chem. Int. Ed. 2020, 59, 17225–17228.
- 19
- 19aK. Kingwell, Nat. Rev. Drug Discov. 2016, 15, 84–85;
- 19bS. Busatto, S. A. Walker, W. Grayson, A. Pham, M. Tian, N. Nesto, J. Barklund, J. Wolfram, Adv. Drug Deliv. Rev. 2020, 159, 377–390;
- 19cM. W. Tibbitt, J. E. Dahlman, R. Langer, J. Am. Chem. Soc. 2016, 138, 704–717;
- 19dM. Srinivasarao, P. S. Low, Chem. Rev. 2017, 117, 12133–12164;
- 19eM. J. Webber, R. Langer, Chem. Soc. Rev. 2017, 46, 6600–6620.
- 20
- 20aT. Lindner, H. Lechert, Zeolites 1996, 16, 196–206;
- 20bB. De Witte, J. Patarin, D. Le Nouen, L. Delmotte, J. L. Guth, T. Cholley, Microporous Mesoporous Mater. 1998, 23, 11–22.
- 21
- 21aS. M. Pai, B. L. Newalkar, N. V. Choudary, Microporous Mesoporous Mater. 2008, 112, 357–367;
- 21bR. E. Morris, A. Burton, L. M. Bull, S. I. Zones, Chem. Mater. 2004, 16, 2844–2851.
- 22
- 22aM. P. J. Peeters, J. W. de Haan, L. J. M. van de Van, J. H. C. van Hooff, J. Phys. Chem. 1993, 97, 5363–5369;
- 22bP. J. Barrie, M. E. Smith, J. Klinowski, Chem. Phys. Lett. 1991, 180, 6–12;
- 22cJ. M. Bennett, J. W. Richardson, J. J. Pluth, J. V. Smith, Zeolites 1987, 7, 160–162.
- 23
- 23aZ. Liu, T. Wakihara, D. Nishioka, K. Oshima, T. Takewaki, T. Okubo, Chem. Commun. 2014, 50, 2526;
- 23bF. J. Jiang, Z. K. Tang, J. P. Zhai, J. T. Ye, J. R. Han, Microporous Mesoporous Mater. 2006, 92, 129–133;
- 23cR. H. Meinhold, N. J. Tapp, J. Chem. Soc., Chem. Commun. 1990, 219–220.
- 24R. J. Mikovsky, Zeolites 1983, 3, 90–92.
- 25M. Sato, K. Maeda, K. Hirasawa, Stud. Surf. Sci. Catal. 1994, 84, 589–596.
- 26D. Parmar, A. J. Mallette, N. Linares, S. A. Saslow, T. Terlier, J. J. Strohm, L. P. Barber, H. Dai, J. G. Martínez, J. D. Rimer, ACS Materials Lett. 2023, 5, 202–208.
- 27
- 27aX. Li, H. Han, W. Xu, S. J. Hwang, Z. Shi, P. Lu, A. Bhan, M. Tsapatsis, J. Am. Chem. Soc. 2022, 144, 9324–9329;
- 27bX. Li, H. Han, W. Xu, S. J. Hwang, P. Lu, A. Bhan, M. Tsapatsis, Angew. Chem. Int. Ed. 2022, 61, e202111180.
- 28H. Nguyen, N. Xiao, S. Daniels, N. Marcella, J. Timoshenko, A. Frenkel, D. G. Vlachos, ACS Catal. 2017, 10, 7363–7370.