Heterochiral π-Stacking Dimerization of Helical Secondary Structures with Emerging Supramolecular Chirality
Wencan Li
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYiqi Shao
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorZhaocheng Xu
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYunpeng Ge
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorZhenzhu Wang
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorProf. Hua Jiang
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Zeyuan Dong
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorWencan Li
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYiqi Shao
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorZhaocheng Xu
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYunpeng Ge
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorZhenzhu Wang
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorProf. Hua Jiang
College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Zeyuan Dong
State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorGraphical Abstract
A specific interface mode type was observed between helical secondary structures, in which a left-handed (M) helix binds specifically to a right-handed (P) helix along the helical axis, leading to the formation of discrete heterochiral helical dimers. Moreover, a concealed supramolecular chirality within the meso-supramolecular dimers was unexpectedly discovered by chiral induction, and was further underpinned by covalent meso-helix structures.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202414317-sup-0001-F2a-checkcif.pdf108.8 KB | Supporting Information |
anie202414317-sup-0001-F3R-checkcif.pdf100.7 KB | Supporting Information |
anie202414317-sup-0001-misc_information.pdf6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Burton, A. R. Thomson, W. M. Dawson, R. L. Brady, D. N. Woolfson, Nat. Chem. 2016, 8, 837–844;
- 1bT. Lebar, D. Lainšček, E. Merljak, J. Aupič, R. Jerala, Nat. Chem. Biol. 2020, 16, 513–519;
- 1cA. J. Scott, A. Niitsu, H. T. Kratochvil, E. J. M. Lang, J. T. Sengel, W. M. Dawson, K. R. Mahendran, M. Mravic, A. R. Thomson, R. L. Brady, L. J. Liu, A. J. Mulholland, H. Bayley, W. F. DeGrado, M. I. Wallace, D. N. Woolfson, Nat. Chem. 2021, 13, 643–650;
- 1dP. Kumar, N. G. Paterson, J. Clayden, D. N. Woolfson, Nature. 2022, 607, 387–392;
- 1eA. T. Hilditch, A. Romanyuk, S. J. Cross, R. Obexer, J. J. McManus, D. N. Woolfson, Nat. Chem. 2023, 16, 89–97.
- 2
- 2aS. De, B. Chi, T. Granier, T. Qi, V. Maurizot, I. Huc, Nat. Chem. 2017, 10, 51–57;
- 2bD. Mazzier, S. De, B. Wicher, V. Maurizot, I. Huc, Chem. Sci. 2019, 10, 6984–6991;
- 2cG. Vantomme, E. W. Meijer, Science. 2019, 363, 1396–1397.
- 3E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, Chem. Rev. 2016, 116, 13752–13990.
- 4
- 4aW. Cai, G. T. Wang, P. Du, R. X. Wang, X. K. Jiang, Z. T. Li, J. Am. Chem. Soc. 2008, 130, 13450–13459;
- 4bS. Kwon, A. Jeon, S. H. Yoo, I. S. Chung, H. S. Lee, Angew. Chem. Int. Ed. 2010, 49, 8232–8236;
- 4cH. Q. Zhao, S. Sheng, Y. H. Hong, H. Q. Zeng, J. Am. Chem. Soc. 2014, 136, 14270–14276.
- 5
- 5aD. E. Mortenson, J. D. Steinkruger, D. F. Kreitler, D. V. Perroni, G. P. Sorenson, L. Huang, R. Mittal, H. G. Yun, B. R. Travis, M. K. Mahanthappa, K. T. Forest, S. H. Gellman, Proc. Nat. Acad. Sci. 2015, 112, 13144–13149;
- 5bD. F. Kreitler, Z. H. Yao, J. D. Steinkruger, D. E. Mortenson, L. J. Huang, R. Mittal, B. R. Travis, K. T. Forest, S. H. Gellman, J. Am. Chem. Soc. 2019, 141, 1583–1592.
- 6F. S. Menke, B. Wicher, V. Maurizot, I. Huc, Angew. Chem. Int. Ed. 2023, 62, e202217325.
- 7
- 7aV. Berl, I. Huc, R. G. Khoury, M. J. Krische, J. M. Lehn, Nature. 2000, 407, 720–723;
- 7bG. Guichard, I. Huc, Chem. Commun. 2011, 47, 5933–5941;
- 7cV. Koehler, A. Roy, I. Huc, Y. Ferrand, Acc. Chem. Res. 2022, 55, 1074–1085.
- 8
- 8aY. Tanaka, H. Katagiri, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2005, 44, 3867–3870;
- 8bH. Goto, Y. Furusho, E. Yashima, J. Am. Chem. Soc. 2007, 129, 109–112;
- 8cW. Makiguchi, S. Kobayashi, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2013, 52, 5275–5279;
- 8dV. Koehler, G. Bruschera, E. Merlet, P. K. Mandal, E. Morvan, F. Rosu, C. Douat, L. Fischer, I. Huc, Y. Ferrand, Angew. Chem. Int. Ed. 2023, 62, e202311639.
- 9
- 9aZ. Q. Yang, H. C. Liu, X. Y. Zhang, Y. B. Lv, Z. Y. Fu, S. Q. Zhao, M. Liu, S. T. Zhang, B. Yang, Adv. Mater. 2023, 36, 202306784;
- 9bB. W. Shen, Y. L. Zhu, Y. J. Kim, X. B. Zhou, H. N. Sun, Z. Y. Lu, M. Lee, Nat. Commun. 2019, 10, 1080;
- 9cW. S. Jin, T. Fukushima, A. Kosaka, M. Niki, N. Ishii, T. Aida, J. Am. Chem. Soc. 2005, 127, 8284–8285;
- 9dJ. P. Hill, W. S. Jin, A Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, T. Aida, Science. 2004, 304, 1481–1483;
- 9eB. H. Teng, P. K. Mandal, L. Allmendinger, C. Douat, Y. Ferrand, I. Huc, Chem. Sci. 2023, 14, 11251–11260.
- 10D. Bindl, P. K. Mandal, L. Allmendinger, I. Huc, Angew. Chem. Int. Ed. 2022, 61, e202116509.
- 11
- 11aJ. W. Sadownik, E. Mattia, P. Nowak, S. Otto, Nat. Chem. 2016, 8, 264–269;
- 11bX. Zhou, G. Liu, K. Yamato, Y. Shen, R. Cheng, X. Wei, W. Bai, Y. Gao, H. Li, Y. Liu, F. Liu, D. M. Czajkowsky, J. Wang, M. J. Dabney, Z. Cai, J. Hu, F. V. Bright, L. He, X. C. Zeng, Z. Shao, B. Gong, Nat. Commun. 2012, 3, 949;
- 11cY. P. Huo, H. Q. Zeng, Acc. Chem. Res. 2016, 49, 922–930.
- 12C. L. Liu, Z. Z. Wang, L. Zhang, Z. Y. Dong, J. Am. Chem. Soc. 2022, 144, 18784–18789.
- 13
- 13aI. Huc, Eur. J. Org. Chem. 2003, 2004, 17–29;
- 13bD. W. Zhang, X. Zhao, J. L. Hou, Z. T. Li, Chem. Rev. 2012, 112, 5271–5316.
- 14T. Pall, Chem. Soc. Rev. 2011, 40, 1305–1323.
- 15
- 15aM. H. Liu, L. Zhang, T. Y. Wang, Chem. Rev. 2015, 115, 7304–7397;
- 15bK. Cobos, R. Rodríguez, E. Quiñoá, R. Riguera, F. Freire, Angew. Chem. Int. Ed. 2020, 59, 23724–23730;
- 15cK. Cobos, E. Quiñoá, R. Riguera, F. Freire, J. Am. Chem. Soc. 2018, 140, 12239–12246;
- 15dX. S. Yan, Q. Wang, X. X. Chen, Y. B. Jiang, Adv. Mater. 2020, 32, 1905667.
- 16
- 16aD. Zheng, L. Zheng, C. Y. Yu, Y. Zhan, Lin, Y. Wang, H. Jiang, Org. Lett. 2019, 21, 2555–2559;
- 16bL. Zheng, Y. L. Zhan, L. Ye, D. Zheng, Y. Wang, K. Zhang, H. Jiang, Chem. Eur. J. 2019, 25, 14162–14168;
- 16cD. Zheng, C. Y. Yu, L. Zheng, Y. L. Zhan, H. Jiang, Chin. Chem. Lett. 2020, 31, 673–676.
- 17V. Maurizot, C. Dolain, Y. Leydet, J. M. Léger, P. Guionneau, I. Huc, J. Am. Chem. Soc. 2004, 126, 10049–10052.
- 18J. Seo, S. Kim, Y. S. Lee, O. H. Kwon, K. H. Park, S. Y. Choi, Y. K. Chung, D. J. Jang, S. Y. Park, J. Photochem. Photobiol. A 2007, 191, 51–58.
- 19Deposition Numbers: 2325533 (F2a), 2326104 (F3R) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.