Complex Dance of Molecules in the Sky: Choreography of Intermolecular Structure and Dynamics in the Cyclopentene−CO2−H2O Hetero Ternary Cluster
Xiao Tian
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorJuncheng Lei
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorTianyue Gao
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorSiyu Zou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorXiujuan Wang
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167 Hannover, Germany
Search for more papers by this authorMeiyue Li
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorChenxu Wang
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorDr. Junhua Chen
School of Pharmacy, Guizhou Medical University, 561113 Guiyang, Guizhou, China
Search for more papers by this authorProf. Dr. Jens-Uwe Grabow
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Wolfgang Jäger
Department of Chemistry, University of Alberta, T6G 2G2 Edmonton, AB, Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Gou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorXiao Tian
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorJuncheng Lei
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorTianyue Gao
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorSiyu Zou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorXiujuan Wang
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167 Hannover, Germany
Search for more papers by this authorMeiyue Li
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorChenxu Wang
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorDr. Junhua Chen
School of Pharmacy, Guizhou Medical University, 561113 Guiyang, Guizhou, China
Search for more papers by this authorProf. Dr. Jens-Uwe Grabow
Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167 Hannover, Germany
Search for more papers by this authorProf. Dr. Wolfgang Jäger
Department of Chemistry, University of Alberta, T6G 2G2 Edmonton, AB, Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Gou
School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
Search for more papers by this authorGraphical Abstract
Abstract
This study delves into driving forces behind the formation of a hetero ternary cluster consisting of volatile organic compounds from industrial or combustion sources, specifically cyclopentene, alongside greenhouse gases like carbon dioxide, and water vapor. While substantial progress has been made in understanding binary complexes, the structural intricacies of hetero ternary clusters remain largely uncharted. Our research characterized the cyclopentene−CO2−H2O hetero ternary cluster utilizing Fourier transform microwave spectroscopy. The observed isomer in the pulsed jet has CO2 and H2O aligning above the cyclopentene ring, with water undergoing an internal rotation approximately about its C2 symmetry axis. Theoretical analyses support these observations, identifying an O−H⋅⋅⋅π hydrogen bond and a secondary C⋅⋅⋅O tetrel bond within this cluster. This study marks a critical step towards comprehending the molecular dynamics and interactions of VOCs, greenhouse gases, and water in the atmosphere, paving the way for further investigations into their roles in climate dynamics and air quality.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202412406-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhou, X. Zhou, C. Wang, H. Zhou, Chemosphere 2023, 313, 137489.
- 2
- 2aU. Pöschl, Angew. Chem. Int. Ed. 2005, 44, 7520–7540;
- 2bJ. Zhong, M. Kumar, J. S. Francisco, X. C. Zeng, Acc. Chem. Res. 2018, 51, 1229–1237.
- 3
- 3aR. Atkinson, Atmos. Environ. 2000, 34, 2063–2101;
- 3bT. Berndt, E. H. Hoffmann, A. Tilgner, F. Stratmann, H. Herrmann, Nat. Commun. 2023, 14, 4849.
- 4
- 4aM. Takeuchi, T. Berkemeier, G. Eris, N. L. Ng, Nat. Commun. 2022, 13, 7883;
- 4bE. R. Delaria, R. C. Cohen, Acc. Chem. Res. 2023, 56, 1720–1730.
- 5W. Fan, T. Chen, Z. Zhu, H. Zhang, Y. Qiu, D. Yin, J. Hazard. Mater. 2022, 430, 128406.
- 6X. Peng, T.-T. Xie, M.-X. Tang, Y. Cheng, Y. Peng, F.-H. Wei, L.-M. Cao, K. Yu, K. Du, L.-Y. He, X.-F. Huang, Environ. Sci. Technol. Lett. 2023, 10, 976–982.
- 7R.-J. Huang, Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt, F. Canonaco, P. Zotter, R. Wolf, S. M. Pieber, E. A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I. E. Haddad, A. S. H. Prévôt, Nature 2014, 514, 218–222.
- 8
- 8aC. Werner, L. K. Meredith, S. N. Ladd, J. Ingrisch, A. Kübert, J. van Haren, M. Bahn, K. Bailey, I. Bamberger, M. Beyer, Science 2021, 374, 1514–1518;
- 8bZ. Yang, Z. Xian, Q. Li, H. Zhang, H. Wei, Y. Jiang, C. Zheng, X Gao, Environ. Sci. Technol. 2024, 58, 7196–7207.
- 9
- 9aR. E. Smalley, L. Wharton, D. H. Levy, J. Chem. Phys. 1975, 63, 4977–4989;
- 9bM. Herman, R. Georges, M. Hepp, D. Hurtmans, Int. Rev. Phys. Chem. 2000, 19, 277–325.
- 10Y. Zheng, S. Herbers, Q. Gou, W. Caminati, J.-U. Grabow, J. Phys. Chem. Lett. 2021, 12, 3907–3913.
- 11
- 11aS. Suzuki, P. G. Green, R. E. Bumgarner, S. Dasgupta, W. A. Goddard III, G. A. Blake, Science 1992, 257, 942–945;
- 11bL. Evangelisti, K. Brendel, H. Mäder, W. Caminati, S. Melandri, Angew. Chem. Int. Ed. 2017, 56, 13699–13703;
- 11cS. R. Domingos, K. Martin, N. Avarvari, M. Schnell, Angew. Chem. Int. Ed. 2019, 58, 11257–11261;
- 11dD. Loru, A. L. Steber, C. Pérez, D. A. Obenchain, B. Temelso, J. C. López, M. Schnell, J. Am. Chem. Soc. 2023, 145, 17201–17210.
- 12
- 12aE. G. Schnitzler, N. A. Seifert, I. Kusuma, W. Jäger, J. Phys. Chem. A 2017, 121, 8625–8631;
- 12bW. Cheng, Y. Zheng, G. Feng, J.-U. Grabow, Q. Gou, Spectrochim. Acta Part A 2020, 239, 118434;
- 12cX. Wang, S. Gao, J. Chen, W. Du, W. Cheng, X. Xu, Q. Gou, J. Phys. Chem. A 2022, 126, 623–629;
- 12dM. Li, Y. Zheng, J. Lei, J. Chen, M. Li, X. Xu, Q. Gou, J.-U. Grabow, Spectrochim. Acta Part A 2024, 317, 124425.
- 13
- 13aW. Li, M. M. Quesada-Moreno, P. Pinacho, M. Schnell, Angew. Chem. Int. Ed. 2021, 60, 5323–5330;
- 13bS. Baweja, S. Panchagnula, M. E. Sanz, L. Evangelisti, C. Pérez, C. West, B. H. Pate, J. Phys. Chem. Lett. 2022, 13, 9510–9516;
- 13cA. L. Steber, B. Temelso, Z. Kisiel, M. Schnell, C. Pérez, Proc. Nat. Acad. Sci. 2023, 120, e2214970120;
- 13dS. Blanco, P. Pinacho, J. C. López, J. Phys. Chem. Lett. 2017, 8, 6060–6066;
- 13eJ. Li, X. Wang, X. Zhang, J. Chen, H. Wang, X. Tian, X. Xu, Q. Gou, Phys. Chem. Chem. Phys. 2023, 25, 4611–4616;
- 13fM. Li, W. Li, C. Pérez, A. Lesarri, J.-U. Grabow, Angew. Chem. Int. Ed. 2024, e202404447;
- 13gE. Burevschi, M. Chrayteh, S. I. Murugachandran, D. Loru, P. Dréan, M. E. Sanz, J. Am. Chem. Soc. 2024, 146, 10925–10933;
- 13hP. Pinacho, J. C. López, Z. Kisiel, S. Blanco, J. Chem. Phys. 2024, 160, 164315;
- 13iC. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Science 2012, 336, 897–901.
- 14A. S. Hazrah, A. Insausti, J. Ma, M. H. Al-Jabiri, W. Jäger, Y. Xu, Angew. Chem. Int. Ed. 2023, 135, e202310610.
10.1002/ange.202310610 Google Scholar
- 15C. Li, R. Signorell, J. Aerosol Sci. 2021, 153, 105676.
- 16
- 16aS. Zou, J. Lei, T. Gao, X. Xu, Q. Gou, J. Phys. Chem. A 2023, 127, 9959–9965;
- 16bH. Wang, J. Chen, Y. Zheng, D. A. Obenchain, X. Xu, Q. Gou, J.-U. Grabow, W. Caminati, J. Phys. Chem. Lett. 2021, 13, 149–155.
- 17
- 17aH. Wang, J. Chen, W. Cheng, Y. Zheng, S. Zou, W. Du, X. Xu, Q. Gou, Spectrochim. Acta Part A 2022, 282, 121677;
- 17bW. Li, S. Melandri, L. Evangelisti, C. Calabrese, A. Vigorito, A. Maris, Phys. Chem. Chem. Phys. 2021, 23, 16915–16922;
- 17cH. Wang, X. Wang, X. Tian, W. Cheng, Y. Zheng, D. A. Obenchain, X. Xu, Q. Gou, Phys. Chem. Chem. Phys. 2021, 23, 25784–25788;
- 17dW. Cheng, Y. Zheng, S. Herbers, H. Zheng, Q. Gou, ChemPhysChem 2020, 22, 154–159;
- 17eM. Li, J. Lei, G. Feng, J.-U. Grabow, Q. Gou, Spectrochim. Acta Part A 2020, 238, 118424;
- 17fS. Gao, D. A. Obenchain, J. Lei, G. Feng, S. Herbers, Q. Gou, J.-U. Grabow, Phys. Chem. Chem. Phys. 2019, 21, 7016–7020.
- 18F. Xie, W. Sun, P. Pinacho, M. Schnell, Angew. Chem. Int. Ed. 2023, 135, e202218539.
- 19
- 19aT. Emilsson, T. D. Klots, R. S. Ruoff, H. S. Gutowsky, J. Chem. Phys. 1990, 93, 6971–6976;
- 19bM. B. Craddock, C. S. Brauer, K. J. Higgins, K. R. Leopold, J. Mol. Spectrosc. 2003, 222, 63–73;
- 19cC. S. Brauer, M. B. Craddock, K. J. Higgins, K. R. Leopold, Mol. Phys. 2006, 104, 3303–3315.
- 20
- 20aH. S. Gutowsky, A. C. Hoey, S. L. Tschopp, J. D. Keen, C. E. Dykstra, J. Chem. Phys. 1995, 102, 3032–3040;
- 20bY. Xu, W. Jäger, Mol. Phys. 1998, 93, 727–737;
- 20cY. Xu, G. S. Armstrong, W. Jäger, J. Chem. Phys. 1999, 110, 4354–4362;
- 20dM. S. Ngar, Y. Xu, W. Jäger, Mol. Phys. 2001, 99, 13–24.
- 21
- 21aE. Arunan, T. Emilsson, H. S. Gutowsky, J. Chem. Phys. 1993, 99, 6208–6210;
- 21bE. Arunan, T. Emilsson, H. Gutowsky, J. Chem. Phys. 1994, 101, 861–868;
- 21cS. Melandri, B. M. Giuliano, A. Maris, L. Evangelisti, B. Velino, W. Caminati, ChemPhysChem 2009, 10, 2503–2507.
- 22C. C. Austin, D. Wang, D. J. Ecobichon, G. Dussault, J. Toxicol. Environ. Health Part A 2001, 63, 437–458.
- 23H. Hsiao-Ching, W. San-Jang, O. J. Di-Yi, W. D. S. Hill, Ind. Eng. Chem. Res. 2015, 54, 9798–9804.
- 24G. W. Rathjens, Jr., J. Chem. Phys. 1962, 36, 2401–2406.
- 25P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.
- 26M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.0, Gaussian, Inc.,Wallingford, CT, 2016.
- 27S. Grimme, J. Chem. Phys. 2006, 124, 034108.
- 28S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 29R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650–654.
- 30S. Simon, M. Duran, J. Dannenberg, J. Chem. Phys. 1996, 105, 11024–11031.
- 31
- 31aT. J. Balle, W. H. Flygare, Rev. Sci. Instrum. 1981, 52, 33–45;
- 31bJ.-U. Grabow, W. Stahl, H. Dreizler, Rev. Sci. Instrum. 1996, 67, 4072–4084;
- 31cQ. Gou, G. Feng, J.-U. Grabow, in 72nd International Symposium on Molecular Spectroscopy, 2017, p. TH03;
- 31dJ. Chen, Y. Zheng, J. Wang, G. Feng, Z. Xia, Q. Gou, J. Chem. Phys. 2017, 147, 094301.
- 32J. Wang, L. Spada, J. Chen, S. Gao, S. Alessandrini, G. Feng, C. Puzzarini, Q. Gou, J. U. Grabow, V. Barone, Angew. Chem. Int. Ed. 2019, 58, 13935–13941.
- 33J. Lei, X. Tian, J. Wang, S. Herbers, M. Li, T. Gao, S. Zou, J.-U. Grabow, Q. Gou, J. Phys. Chem. Lett. 2024, 15, 7597–7602 .
- 34
- 34aK. I. Peterson, R. D. Suenram, F. J. Lovas, J. Chem. Phys. 1989, 90, 5964–5970;
- 34bK. I. Peterson, R. D. Suenram, F. J. Lovas, J. Chem. Phys. 1991, 94, 106–117;
- 34cH. G. Columberg, A. N. Bauder, Mol. Phys. 2010, 93, 215–228.
- 35H. M. Pickett, J. Mol. Spectrosc. 1991, 148, 371–377.
- 36J. K. Watson, J. Chem. Phys. 1967, 46, 1935–1949.
- 37M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275–280.
- 38Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2007, 120, 215–241.
- 39P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Chem. Phys. 1994, 98, 11623–11627.
- 40J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- 41F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 42T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539–555.
- 43T. Lu, F. Chen, J. Comput. Chem. 2011, 33, 580–592.
- 44W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
- 45E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605–1612.
- 46E. D. Glendening, C. R. Landis, F. Weinhold, WIREs Comput. Mol. Sci. 2011, 2, 1–42.
- 47M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962–975.
- 48T. Lu, Q. Chen, J. Phys. Chem. A 2023, 127, 7023–7035.
- 49J.-U. Grabow, FTMW++, Program for the experiment control, data acquisition, and analysis, Leibniz Universität Hannover, Hannover (Germany), 2004.