Controllable Multi-Exciton Zero-Dimensional Antimony-Based Metal Halides for White-light Emission and β-Ray Detection
Chang-hong Wei
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorDr. Shipeng Dong
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorDr. Zhiheng Xu
Department of Nuclear Science and Technology, School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, China
Search for more papers by this authorMuzi Li
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorDr. Tao Zhang
Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
Search for more papers by this authorZhibin Xu
Department of Nuclear Science and Technology, School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, China
Search for more papers by this authorProf. Si Lan
School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
Search for more papers by this authorProf. Shuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 215006 Suzhou, China
Search for more papers by this authorCorresponding Author
Prof. Liang Mao
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorChang-hong Wei
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorDr. Shipeng Dong
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorDr. Zhiheng Xu
Department of Nuclear Science and Technology, School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, China
Search for more papers by this authorMuzi Li
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorDr. Tao Zhang
Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
Search for more papers by this authorZhibin Xu
Department of Nuclear Science and Technology, School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, China
Search for more papers by this authorProf. Si Lan
School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
Search for more papers by this authorProf. Shuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 215006 Suzhou, China
Search for more papers by this authorCorresponding Author
Prof. Liang Mao
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, 210093 Nanjing, China
Search for more papers by this authorGraphical Abstract
The [SbCl5]2− luminescent center structure is formed by self-assembly of SbCl3, methylamine hydrochloride, and 18-crown ether-6. This asymmetric structure can control the emission of singlet-triplet hybrid excitons by wavelength at room temperature. Under ultraviolet irradiation at 310 nm, it shows strong emission at 470 nm, white light emission under 340 nm irradiation, and strong emission at 570 nm under 370 nm irradiation.
Abstract
Self-trapped exciton (STE) emission, typified by antimony (Sb), with broadband characteristics, represents the next generation of materials for solid-state lighting and radiation detection. However, little is known about the multiexciton behavior of the Sb emission center. Here, we proposed a general approach for designing antimony-centered multi-exciton emitting materials through self-assembly. Benefitting from controllable multiexciton behavior, dual-band white light emission spanning the entire visible spectrum was achieved. Relying on the reduction of an effective atomic number brought by self-assembly, excellent scintillation response to β-rays was attained. This study offers unprecedented insight into hybrid single/triple STE emission and unveils new avenues for single-emitter white-light emission, as well as radiographic testing using low-risk β-rays as sources.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202412253-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Cheng, L. Feng, Y. Liu, D. Zheng, Y. Sang, W. Zhao, Y. Yang, S. Yang, D. Wei, G. Wang, K. Han, Angew. Chem. Int. Ed. Engl. 2020, 59, 21414–21418;
- 1bP. Fu, S. Geng, R. Mi, R. Wu, G. Zheng, B. Su, Z. Xia, G. Niu, J. Tang, Z. Xiao, Energy Environ. Mater. 2023;
- 1cS. Liu, X. Fang, B. Lu, D. Yan, Nat. Commun. 2020, 11, 4649;
- 1dZ. Luo, Y. Liu, Y. Liu, C. Li, Y. Li, Q. Li, Y. Wei, L. Zhang, B. Xu, X. Chang, Z. Quan, Adv. Mater. 2022, 34, e2200607;
- 1eB. Saparov, D. B. Mitzi, Chem. Rev. 2016, 116, 4558–4596;
- 1fS. Sun, M. Lu, X. Gao, Z. Shi, X. Bai, W. W. Yu, Y. Zhang, Adv. Sci. 2021, 8, e2102689;
- 1gL. J. Xu, X. Lin, Q. He, M. Worku, B. Ma, Nat. Commun. 2020, 11, 4329;
- 1hS. Yakunin, B. M. Benin, Y. Shynkarenko, O. Nazarenko, M. I. Bodnarchuk, D. N. Dirin, C. Hofer, S. Cattaneo, M. V. Kovalenko, Nat. Mater. 2019, 18, 846–852;
- 1iL. Zhou, J. F. Liao, D. B. Kuang, Adv. Opt. Mater. 2021, 9.
- 2
- 2aY. Jing, Y. Liu, M. Li, Z. Xia, Adv. Opt. Mater. 2021, 9;
- 2bC. Zhou, Y. Tian, M. Wang, A. Rose, T. Besara, N. K. Doyle, Z. Yuan, J. C. Wang, R. Clark, Y. Hu, T. Siegrist, S. Lin, B. Ma, Angew. Chem. Int. Ed. Engl. 2017, 56, 9018–9022;
- 2cR. Zhang, X. Mao, Y. Yang, S. Yang, W. Zhao, T. Wumaier, D. Wei, W. Deng, K. Han, Angew. Chem. Int. Ed. Engl. 2019, 58, 2725–2729;
- 2dX. Wang, T. Bai, B. Yang, R. Zhang, D. Zheng, J. Jiang, S. Tao, F. Liu, K. L. Han, Nano Lett. 2022, 22, 636–643;
- 2eV. Morad, Y. Shynkarenko, S. Yakunin, A. Brumberg, R. D. Schaller, M. V. Kovalenko, J. Am. Chem. Soc. 2019, 141, 9764–9768;
- 2fM. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk, Science 2017, 358, 745–750;
- 2gJ.-H. Wei, J.-F. Liao, L. Zhou, J.-B. Luo, X.-D. Wang, D.-B. Kuang, Sci. Adv. 2021, 7.
- 3
- 3aA. Noculak, V. Morad, K. M. McCall, S. Yakunin, Y. Shynkarenko, M. Worle, M. V. Kovalenko, Chem. Mater. 2020, 32, 5118–5124;
- 3bY. Jing, Y. Liu, X. Jiang, M. S. Molokeev, Z. Lin, Z. Xia, Chem. Mater. 2020, 32, 5327–5334;
- 3cC. Sun, Z. Deng, Z. Li, Z. Chen, X. Zhang, J. Chen, H. Lu, P. Canepa, R. Chen, L. Mao, Angew. Chem. Int. Ed. Engl. 2023, 62, e202216720.
- 4Q. Guo, X. Zhao, B. Song, J. Luo, J. Tang, Adv. Mater. 2022, 34, e2201008.
- 5
- 5aY.-C. Peng, S.-H. Zhou, J.-C. Jin, T.-H. Zhuang, L.-K. Gong, H.-W. Lin, Z.-P. Wang, K.-Z. Du, X.-Y. Huang, J. Phys. Chem. C 2022;
- 5bY.-C. Peng, H.-W. Lin, S.-H. Zhou, J.-C. Jin, T.-H. Zhuang, A. Ablez, Z.-P. Wang, K.-Z. Du, X.-Y. Huang, Molecules 2023, 28.
- 6
- 6aW. Zhang, W. Zheng, L. Li, P. Huang, Z. Gong, Z. Zhou, J. Sun, Y. Yu, X. Chen, Angew. Chem. Int. Ed. 2022, 61;
- 6bB. Chen, Y. Guo, Y. Wang, Z. Liu, Q. Wei, S. Wang, A. L. Rogach, G. Xing, P. Shi, F. Wang, J. Am. Chem. Soc. 2021, 143, 17599–17606.
- 7
- 7aH. Peng, Y. Tian, Z. Yu, X. Wang, B. Ke, Y. Zhao, T. Dong, J. Wang, B. Zou, Sci. China Mater. 2022, 65, 1594–1600;
- 7bY.-C. Peng, S.-H. Zhou, J.-C. Jin, T.-H. Zhuang, L.-K. Gong, H.-W. Lin, Z.-P. Wang, K.-Z. Du, X.-Y. Huang, J. Phys. Chem. C 2022, 126, 17381–17389;
- 7cZ. Li, Y. Li, P. Liang, T. Zhou, L. Wang, R.-J. Xie, Chem. Mater. 2019, 31, 9363–9371.
- 8
- 8aS. S. Li, P. Cheng, H. Liu, J. Li, S. Wang, C. Xiao, J. Liu, J. Chen, K. Wu, Angew. Chem. Int. Ed. Engl. 2024, 63, e202319969;
- 8bM. L. Zaffalon, Y. Wu, F. Cova, L. Gironi, X. Li, V. Pinchetti, Y. Liu, M. Imran, A. Cemmi, I. Di Sarcina, L. Manna, H. Zeng, S. Brovelli, Adv. Funct. Mater. 2023, 33;
- 8cV. Morad, S. Yakunin, M. V. Kovalenko, ACS Materials Lett. 2020, 2, 845–852.
- 9Y. Deng, X. Liang, F. Li, M. Wang, Z. Zhou, J. Zhao, F. Wang, S. Liu, Q. Zhao, Laser Photonics Rev. 2023, 17.
- 10
- 10aY. Zhang, X. Liu, H. Sun, J. Zhang, X. Gao, C. Yang, Q. Li, H. Jiang, J. Wang, D. Xu, Angew. Chem. Int. Ed. Engl. 2021, 60, 7587–7592;
- 10bF. Jiang, Z. Wu, M. Lu, Y. Gao, X. Li, X. Bai, Y. Ji, Y. Zhang, Adv. Mater. 2023, 35, e2211088.
- 11
- 11aQ. He, C. Zhou, L. Xu, S. Lee, X. Lin, J. Neu, M. Worku, M. Chaaban, B. Ma, ACS Materials Lett. 2020, 2, 633–638;
- 11bZ. Xu, N. Li, X. Yan, X. Wang, T. He, Z. Yang, S. Liu, Adv. Opt. Mater. 2023, 12;
- 11cZ. P. Wang, D. L. Xie, F. Zhang, J. B. Yu, X. P. Chen, C. P. Wong, Sci. Adv. 2020, 6.
- 12C. Zhu, J. Jin, Z. Wang, Z. Xu, M. C. Folgueras, Y. Jiang, C. B. Uzundal, H. K. D. Le, F. Wang, X. R. Zheng, P. Yang, Science 2024, 383, 86–93.
- 13C. Zhu, J. Jin, M. Gao, A. M. Oddo, M. C. Folgueras, Y. Zhang, C. K. Lin, P. Yang, J. Am. Chem. Soc. 2022, 144, 12450–12458.
- 14E. R. Dohner, E. T. Hoke, H. I. Karunadasa, J. Am. Chem. Soc. 2014, 136, 1718–1721.
- 15D. Yu, P. Wang, F. Cao, Y. Gu, J. Liu, Z. Han, B. Huang, Y. Zou, X. Xu, H. Zeng, Nat. Commun. 2020, 11.
- 16D. Zhou, H. Hao, Y. Ma, H. Zhong, Y. Dai, K. Cai, S. Mukherjee, J. Liu, H. Bian, J. Phys. Chem. B 2020, 124, 9154–9162.
- 17H. Arfin, A. Nag, J. Phys. Chem. Lett. 2021, 12, 10002–10008.
- 18
- 18aJ. L. Li, Y. F. Sang, L. J. Xu, H. Y. Lu, J. Y. Wang, Z. N. Chen, Angew. Chem. Int. Ed. Engl. 2022, 61, e202113450;
- 18bM. Li, Z. Xia, Chem. Soc. Rev. 2021, 50, 2626–2662.
- 19B. Zhou, Z. Liu, S. Fang, J. Nie, H. Zhong, H. Hu, H. Li, Y. Shi, J. Phys. Chem. Lett. 2022, 13, 9140–9147.
- 20J. Xu, S. Li, C. C. Qin, Z. J. Feng, Y. P. Du, J. Phys. Chem. C 2020, 124, 11625–11630.
- 21
- 21aQ. Mo, Q. Qian, Y. Shi, W. Cai, S. Zhao, Z. Zang, Adv. Opt. Mater. 2022, 10;
- 21bH. L. Xuan, J. L. Li, L. J. Xu, D. S. Zheng, Z. N. Chen, Adv. Opt. Mater. 2022, 10;
- 21cD.-Y. Li, J.-H. Song, Z.-Y. Xu, Y.-J. Gao, X. Yin, Y.-H. Hou, L.-J. Feng, C.-Y. Yue, H. Fei, X.-W. Lei, Chem. Mater. 2022, 34, 6985–6995;
- 21dJ. B. Luo, J. H. Wei, Z. Z. Zhang, D. B. Kuang, Inorg. Chem. 2022, 61, 338–345;
- 21eH. Peng, X. He, Q. Wei, Y. Tian, W. Lin, S. Yao, B. Zou, ACS Appl. Mater. Interfaces 2022, 14, 45611–45620;
- 21fX. Yun, J. Nie, H. Wang, H. Hu, H. Zhong, D. Xu, Y. Shi, H. Li, ACS Appl. Nano Mater. 2023, 6, 19581–19587;
- 21gR. Zhang, H. Xie, Q. Zhao, Z. Tang, C. Yang, B. Su, Inorg. Chem. 2023, 62, 19771–19779;
- 21hS.-B. Xiao, C.-H. Yang, Z. Deng, Z.-N. Chen, L.-J. Xu, J. Lumin. 2023, 260;
- 21iJ.-Q. Zhao, H.-S. Shi, L.-R. Zeng, H. Ge, Y.-H. Hou, X.-M. Wu, C.-Y. Yue, X.-W. Lei, Chem. Eng. J. 2022, 431;
- 21jL. Guo, Z. Wang, Y. Zhou, L. Huang, W. Chen, Y. Liu, F. Wang, X. Zhang, W. Chen, J. a. Lai, X. Tang, J. Lumin. 2024, 266.
- 22
- 22aA. Dandrea, R. Delsole, Phys. Rev. B 1982, 25, 3714–3730;
- 22bJ. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, E. Lifshitz, ACS Nano 2016, 10, 6363–6371;
- 22cK. M. McCall, C. C. Stoumpos, S. S. Kostina, M. G. Kanatzidis, B. W. Wessels, Chem. Mater. 2017, 29, 4129–4145;
- 22dJ. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, J. Tang, Nature 2018, 563, 541–545.
- 23M. Matsuoka, M. Higuchi, F. Nishikido, T. Yamaya, T. Takeda, Y. Masubuchi, J. H. Kaneko, J. Lumin. 2022, 251.
- 24T. Yanagida, T. Kato, D. Nakauchi, N. Kawaguchi, Jpn. J. Appl. Phys. 2022, 62.
- 25F. Neese, Wiley Interdisciplinary Reviews-Computational Molecular Science 2022, 12.
- 26J. Moellmann, S. Grimme, J. Phys. Chem. C 2014, 118, 7615–7621.
- 27T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 28
- 28aG. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169–11186;
- 28bG. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15–50.
- 29
- 29aJ. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982–9985; bJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396–1396.
- 30
- 30aS. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465;
- 30bS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132.
- 31P. E. Blöchl, C. J. Först, J. Schimpl, Bull. Mater. Sci. 2003, 26, 33–41.
- 32S. H. Kim, M. G. Pia, T. Basaglia, M. C. Han, G. Hoff, C. H. Kim, P. Saracco, IEEE Trans. Nucl. Sci. 2015, 62, 451–479.
- 33Deposition Numbers 2364440 (for [D6@Ca]SbCl5), 2364441 (for [18C@AC]2SbCl5), 2364442 (for [D6@Mg]SbCl5), 2364443 (for [18C@Ba]2SbCl7 ⋅ D), 2364444 (for [18C@K]2SbCl5), 2364445 (for [18C@Sr]2SbCl7), 2364446 (for [18C@EA]2SbCl5), 2364447 (for [18C@MA]2SbCl5), and 2364448 (for [18C@Na]2SbCl5) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.