Simultaneous Inhibition of Vanadium Dissolution and Zinc Dendrites by Mineral-Derived Solid-State Electrolyte for High-Performance Zinc Metal Batteries
Chuancong Zhou
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
These authors contributed equally.
Search for more papers by this authorZeyou Wang
China State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023 China
These authors contributed equally.
Search for more papers by this authorQing Nan
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorHuan Wen
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorZhenming Xu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorJie Zhang
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorZejun Zhao
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorJing Li
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorZhenyue Xing
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorPeng Rao
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorZhenye Kang
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Xiaodong Shi
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Xinlong Tian
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorChuancong Zhou
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
These authors contributed equally.
Search for more papers by this authorZeyou Wang
China State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023 China
These authors contributed equally.
Search for more papers by this authorQing Nan
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorHuan Wen
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
Search for more papers by this authorZhenming Xu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
Search for more papers by this authorJie Zhang
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorZejun Zhao
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorJing Li
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorZhenyue Xing
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorPeng Rao
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorZhenye Kang
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Xiaodong Shi
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Xinlong Tian
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
Search for more papers by this authorGraphical Abstract
Kaolin is demonstrated as an effective material to prepare Zn-based solid electrolyte (KL-Zn), which simultaneously eliminates the interfacial side reactions of zinc anode and inhibits the vanadium dissolution of NH4V4O10 cathode, endowing high reversible capacity and superior cyclic stability for Zn//NH4V4O10 batteries.
Abstract
Designing solid electrolyte is deemed as an effective approach to suppress the side reaction of zinc anode and active material dissolution of cathodes in liquid electrolytes for zinc metal batteries (ZMBs). Herein, kaolin is comprehensively investigated as raw material to prepare solid electrolyte (KL−Zn) for ZMBs. As demonstrated, KL−Zn electrolyte is an excellent electronic insulator and zinc ionic conductor, which presents wide voltage window of 2.73 V, high ionic conductivity of 5.08 mS cm−1, and high Zn2+ transference number of 0.79. For the Zn//Zn cells, superior cyclic stability lasting for 2200 h can be achieved at 0.2 mA cm−2. For the Zn//NH4V4O10 batteries, stable capacity of 245.8 mAh g−1 can be maintained at 0.2 A g−1 after 200 cycles along with high retention ratio of 81 %, manifesting KL−Zn electrolyte contributes to stabilize the crystal structure of NH4V4O10 cathode. These satisfying performances can be attributed to the enlarged interlayer spacing, zinc (de)solvation-free mechanism and fast diffusion kinetics of KL−Zn electrolyte, availably guaranteeing uniform zinc deposition for zinc anode and reversible zinc (de)intercalation for NH4V4O10 cathode. Additionally, this work also verifies the application possibility of KL−Zn electrolyte for Zn//MnO2 batteries and Zn//I2 batteries, suggesting the universality of mineral-based solid electrolyte.
Conflict of Interests
The authors declare no competing interests.
Open Research
Data Availability Statement
The data that support the findings of this study are available within the manuscript and the corresponding Supporting Information file.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202412006-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. W. Gourley, R. Brown, B. D. Adams, D. Higgins, Joule 2023, 7(7), 1415–1436.
- 2L. Wang, B. Zhang, W. Zhou, Z. Zhao, X. Liu, R. Zhao, Z. Sun, H. Li, X. Wang, T. Zhang, et al., J. Am. Chem. Soc. 2024, 146(9), 6199–6208.
- 3G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin, K. Davey, G. Liang, S. Liu, J. Mao, Z. Guo, Adv. Funct. Mater. 2023, 34(5), 2301291.
- 4S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao, C. Zhang, S. Zhang, Z. Guo, Angew. Chem. Int. Ed. 2024, 63(17), e202400045.
- 5Y. Liu, C. Lu, Y. Yang, W. Chen, F. Ye, H. Dong, Y. Wu, R. Ma, L. Hu, Adv. Mater. 2024, 36(18), 2312982.
- 6Z. Xing, G. Xu, J. Han, G. Chen, B. Lu, S. Liang, J. Zhou, Trends Chem. 2023, 5(5), 380–392.
- 7Y. Niu, D. Wang, Y. Ma, L. Zhi, Chin. Chem. Lett. 2022, 33(3), 1430–1434.
- 8Y. Dai, C. Zhang, J. Li, X. Gao, P. Hu, C. Ye, H. He, J. Zhu, W. Zhang, R. Chen, Adv. Mater. 2024, 36(14), 2310645.
- 9V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7(5), 1597–1614.
- 10Y. Qin, X. Wang, Angew. Chem. Int. Ed. 2024, 63(2), e202315464.
- 11D. W. Smith, J. Chem. Educ. 1977, 54(9), 540.
- 12X. Dou, X. Xie, S. Liang, G. Fang, Sci. Bull. 2024, 69(6), 833–845.
- 13Y. Kim, Y. Park, M. Kim, J. Lee, K. J. Kim, J. W. Choi, Nat. Commun. 2022, 13(1), 2371.
- 14Y. Lu, T. Zhu, W. van den Bergh, M. Stefik, K. Huang, Angew. Chem. Int. Ed. 2020, 132(39), 17152–17159.
- 15W. Zhou, H. J. Fan, D. Zhao, D. Chao, Natl. Sci. Rev. 2023, 10(12), nwad265.
- 16S. Tian, T. Hwang, S. Malakpour Estalaki, Y. Tian, L. Zhou, T. Milazzo, S. Moon, S. Wu, R. Jian, K. Balkus Jr, Adv. Energy Mater. 2023, 2300782.
- 17D. G. Vazquez, T. P. Pollard, J. Mars, J. M. Yoo, H.-G. Steinrück, S. E. Bone, O. V. Safonova, M. F. Toney, O. Borodin, M. R. Lukatskaya, Energy Environ. Sci. 2023, 16(5), 1982–1991.
- 18Y. Zhong, X. Xie, Z. Zeng, B. Lu, G. Chen, J. Zhou, Angew. Chem. Int. Ed. 2023, 62(40), e202310577.
- 19X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou, S. Liang, Adv. Energy Mater. 2022, 12(5), 2102393.
- 20G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li, J. A. Yuwono, J. Mao, J. Hao, J. Vongsvivut, L. Xing, Nat. Commun. 2023, 14(1), 6526.
- 21C. Wang, X. Zeng, J. Qu, J. M. Cairney, Q. Meng, P. J. Cullen, Z. Pei, Matter 2023, 6(11), 3993–4012.
- 22B. Zhang, L. Qin, Y. Fang, Y. Chai, X. Xie, B. Lu, S. Liang, J. Zhou, Sci. Bull. 2022, 67(9), 955–962.
- 23X. Tang, P. Wang, M. Bai, Z. Wang, H. Wang, M. Zhang, Y. Ma, Adv. Sci. 2021, 8(23), 2102053.
- 24Z. Khan, D. Kumar, X. Crispin, Adv. Mater. 2023, 35(36), 2300369.
- 25J. Han, A. Mariani, S. Passerini, A. Varzi, Energy Environ. Sci. 2023, 16(4), 1480–1501.
- 26W. Wang, C. Li, S. Liu, J. Zhang, D. Zhang, J. Du, Q. Zhang, Y. Yao, Adv. Energy Mater. 2023, 13(18), 2300250.
- 27Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Adv. Mater. 2022, 34(4), 2106409.
- 28Z. Lv, Y. Kang, G. Chen, J. Yang, M. Chen, P. Lin, Q. Wu, M. Zhang, J. Zhao, Y. Yang, Adv. Funct. Mater. 2024, 34(3), 2310476.
- 29W. B. Tu, S. Liang, L. N. Song, X. X. Wang, G. J. Ji, J. J. Xu, Adv. Funct. Mater. 2024, 2316137.
- 30Z. Zhao, B. Nian, Y. Lei, Y. Wang, L. Shi, J. Yin, O. F. Mohammed, H. N. Alshareef, Adv. Energy Mater. 2023, 13(21), 2300063.
- 31Y. Xiang, H. Pan, Y. Jiang, S. Xie, M. Xu, X. Zhang, Nano Energy 2023, 117, 108873.
- 32H. Yang, C.-A. Wang, Y. Dong, Adv. Powder Mater. 2024, 100185.
- 33S. Guo, L. Qin, C. Hu, L. Li, Z. Luo, G. Fang, S. Liang, Adv. Energy Mater. 2022, 12(25), 2200730.
- 34H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, Angew. Chem. Int. Ed. 2020, 132(24), 9463–9467.
- 35F. Zhao, J. Feng, H. Dong, R. Chen, T. Munshi, I. Scowen, S. Guan, Y. E. Miao, T. Liu, I. P. Parkin, Adv. Funct. Mater. 2024, 2409400.
- 36H. Ge, L. Qin, B. Zhang, L. Jiang, Y. Tang, B. Lu, S. Tian, J. Zhou, Nanoscale Horiz. 2024. DOI: 10.1039/D4NH00243A.
- 37W. Nie, F. Tian, L. Zhang, L. Chang, Q. Sun, T. Duan, X. Lu, H. Cheng, Adv. Funct. Mater. 2024, 2403305.
- 38Z. Liu, X. Luo, L. Qin, G. Fang, S. Liang, Adv. Powder Mater. 2022, 1(2), 100011.
- 39C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater. 2018, 30(5), 1705580.
- 40Y. Liu, X. Wu, Nano Energy 2021, 86, 106124.
- 41M. S. Chae, D. Setiawan, H. J. Kim, S.-T. Hong, Batteries 2021, 7(3), 54.
- 42P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Adv. Energy Mater. 2018, 8(10), 1702463.
- 43G. Yang, Q. Li, K. Ma, C. Hong, C. Wang, J. Mater. Chem. A 2020, 8(16), 8084–8095.
- 44Y. Ran, J. Ren, Y. Kong, B. Wang, X. Xiao, Y. Wang, Electrochim. Acta 2022, 412, 140120.
- 45R. Chen, C. Zhang, J. Li, Z. Du, F. Guo, W. Zhang, Y. Dai, W. Zong, X. Gao, J. Zhu, Energy Environ. Sci. 2023, 16(6), 2540–2549.
- 46C. Li, W. Wu, Y. Liu, X. Yang, Z. Qin, Z. Jia, X. Sun, J. Power Sources 2022, 520, 230853.
- 47B. Lan, Z. Peng, L. Chen, C. Tang, S. Dong, C. Chen, M. Zhou, C. Chen, Q. An, P. Luo, J. Alloys Compd. 2019, 787, 9–16.
- 48F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Nat. Commun. 2018, 9(1), 1656.
- 49X. Wang, B. Xi, X. Ma, Z. Feng, Y. Jia, J. Feng, Y. Qian, S. Xiong, Nano Lett. 2020, 20(4), 2899–2906.
- 50Q. Li, X. Ye, H. Yu, C. Du, W. Sun, W. Liu, H. Pan, X. Rui, Chin. Chem. Lett. 2022, 33(5), 2663–2668.
- 51H. Luo, B. Wang, C. Wang, F. Wu, F. Jin, B. Cong, Y. Ning, Y. Zhou, D. Wang, H. Liu, Energy Storage Mater. 2020, 33, 390–398.
- 52H. Luo, B. Wang, F. Wang, J. Yang, F. Wu, Y. Ning, Y. Zhou, D. Wang, H. Liu, S. Dou, ACS Nano 2020, 14(6), 7328–7337.
- 53Y. Zhao, S. Liang, X. Shi, Y. Yang, Y. Tang, B. Lu, J. Zhou, Adv. Funct. Mater. 2022, 32(32), 2203819.
- 54W. Yang, W. Yang, Y. Huang, C. Xu, L. Dong, X. Peng, Chin. Chem. Lett. 2022, 33(10), 4628–4634.
- 55H. Shen, S. Jing, S. Liu, Y. Huang, F. He, Y. Liu, Z. Zhuang, Z. Zhang, F. Liu, Adv. Powder Mater. 2023, 2(4), 100136.
- 56X. Liu, W. Kang, X. Li, L. Zeng, Y. Li, Q. Wang, C. Zhang, Nano Mater. Sci. 2023, 5(2), 210–227.
- 57Y. Pan, Z. Liu, S. Liu, L. Qin, Y. Yang, M. Zhou, Y. Sun, X. Cao, S. Liang, G. Fang, Adv. Energy Mater. 2023, 13(11), 2203766.
- 58J. Li, Z. Liu, S. Han, P. Zhou, B. Lu, J. Zhou, Z. Zeng, Z. Chen, J. Zhou, Nano-Micro Lett. 2023, 15(1), 237.
- 59F. Li, C. Zhou, J. Zhang, Y. Gao, Q. Nan, J. Luo, Z. Xu, Z. Zhao, P. Rao, J. Li, Adv. Mater. 2024, 2408213.