The Effects of Pore Defects in π-Extended Pentadecabenzo[9]helicene
Ke-Lin Zhu
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorZhi-Ao Li
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorDr. Jiaqi Liang
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorKang-Li Zou
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorDr. Yun-Jia Shen
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Han-Yuan Gong
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorKe-Lin Zhu
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorZhi-Ao Li
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorDr. Jiaqi Liang
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorKang-Li Zou
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorDr. Yun-Jia Shen
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Han-Yuan Gong
College of Chemistry, Beijing Normal University, No. 19, XinWai St, HaiDian District, Beijing, 100875 China
Search for more papers by this authorGraphical Abstract
A bottom-up synthesis strategy was used to introduce pore defects into the fully conjugated π-extended helicene. This modification transformed the helicene with original aggregation-caused quenching (ACQ) characteristics into a series of novel helicenes with dual-state emission (DSE) and circularly polarized luminescence (CPL) properties. Consequently, the application range of the helicene in chiral luminescent materials was expanded.
Abstract
The introduction of precise pore defects into nanocarbon structures results in the emergence of distinct physicochemical characteristics. However, there is a lack of research on non-planar chiral nanographene involving precise pore defects. Herein, we have developed two analogues to the π-extended pentadecabenzo[9]helicene (EP9H) containing embedded pore defects. Each molecules, namely extended dodecabenzo[7]helicene (ED7H; 1) or extended nonabenzo[5]helicene (EN5H; 2), exhibits dual-state emission. Significantly, the value of |glum| of 1 is exceptionally high at 1.41×10−2 in solution and BCPL as 254 M−1 cm−1. In PMMA film, |glum| of 1 is 8.56×10−3, and in powder film, it is 5.00×10−3. This study demonstrates that nanocarbon molecules with pore defects exhibit dual-state emission properties while maintaining quite good chiral luminescence properties. It was distinguished from the aggregation-caused quenching (ACQ) effect corresponding to the nanocarbon without embedded defect. Incorporating pore defects into chiral nanocarbon molecules also simplifies the synthesis process and enhances the solubility of the resulting product. These findings suggest that the introduction of pore defects can be a viable approach to improve nanocarbon molecules.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202409713-sup-0001-misc_information.pdf30.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Qiu, C. W. Ju, L. Frederic, Y. Hu, D. Schollmeyer, G. Pieters, K. Mullen, A. Narita, J. Am. Chem. Soc. 2021, 143, 4661–4667.
- 2J.-K. Li, X.-Y. Chen, W.-L. Zhao, Y.-L. Guo, Y. Zhang, X.-C. Wang, A. C. Sue, X.-Y. Cao, M. Li, C.-F. Chen, X.-Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202215367.
- 3Y.-J. Shen, N.-T. Yao, L.-N. Diao, Y. Yang, X.-L. Chen, H.-Y. Gong, Angew. Chem. Int. Ed. 2023, 62, e202300840.
- 4J. Tan, X. Xu, J. Liu, S. Vasylevskyi, Z. Lin, R. Kabe, Y. Zou, K. Mullen, A. Narita, Y. Hu, Angew. Chem. Int. Ed. 2023, 62, e202218494.
- 5Y.-J. Shen, K.-L. Zhu, J.-Q. Liang, X. Sun, H.-Y. Gong, J. Mater. Chem. C. 2023, 11, 4267–4287.
- 6J. Wu, W. Pisula, K. Mullen, Chem. Rev. 2007, 107, 718–747.
- 7J. Ma, K. Zhang, K. S. Schellhammer, Y. Fu, H. Komber, C. Xu, A. A. Popov, F. Hennersdorf, J. J. Weigand, S. Zhou, W. Pisula, F. Ortmann, R. Berger, J. Liu, X. Feng, Chem. Sci. 2019, 10, 4025–4031.
- 8S. H. Pun, Y. Wang, M. Chu, C. K. Chan, Y. Li, Z. Liu, Q. Miao, J. Am. Chem. Soc. 2019, 141, 9680–9686.
- 9Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 2011, 3, 197–204.
- 10F. Lombardi, J. Ma, D. I. Alexandropoulos, H. Komber, J. Liu, W. K. Myers, X. Feng, L. Bogani, Chem 2021, 7, 1363–1378.
- 11W. Zeng, H. Phan, T. S. Herng, T. Y. Gopalakrishna, N. Aratani, Z. Zeng, H. Yamada, J. Ding, J. Wu, Chem 2017, 2, 81–92.
- 12Q. Jiang, H. Wei, X. Hou, C. Chi, Angew. Chem. Int. Ed. 2023, 62, e202306938.
- 13A. F. Carvalho, B. Kulyk, A. J. S. Fernandes, E. Fortunato, F. M. Costa, Adv. Mater. 2022, 34, e2101326.
- 14U. Beser, M. Kastler, A. Maghsoumi, M. Wagner, C. Castiglioni, M. Tommasini, A. Narita, X. Feng, K. Mullen, J. Am. Chem. Soc. 2016, 138, 4322–4325.
- 15H. Hou, X. J. Zhao, C. Tang, Y. Y. Ju, Z. Y. Deng, X. R. Wang, L. B. Feng, D. H. Lin, X. Hou, A. Narita, K. Mullen, Y. Z. Tan, Nat. Commun. 2020, 11, 3976.
- 16D. Wang, X. Lu, Arramel, M. Yang, J. Wu, A. T. S. Wee, Small 2021, 17, e2102246.
- 17Z. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita, S. Sato, H. Isobe, Science 2019, 363, 151–155.
- 18C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M. V. Costache, M. Paradinas, M. Panighel, G. Ceballos, S. O. Valenzuela, D. Pena, A. Mugarza, Science 2018, 360, 199–203.
- 19R. Yin, J. Wang, Z. L. Qiu, J. Meng, H. Xu, Z. Wang, Y. Liang, X. J. Zhao, C. Ma, Y. Z. Tan, Q. Li, B. Wang, J. Am. Chem. Soc. 2022, 144, 14798–14808.
- 20R. R. Nair, M. Sepioni, I. L. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, I. V. Grigorieva, Nat. Phys. 2012, 8, 199–202.
- 21M. Di Giovannantonio, K. Eimre, A. V. Yakutovich, Q. Chen, S. Mishra, J. I. Urgel, C. A. Pignedoli, P. Ruffieux, K. Mullen, A. Narita, R. Fasel, J. Am. Chem. Soc. 2019, 141, 12346–12354.
- 22D. Singh, V. Shukla, R. Ahuja, Phys. Rev. B 2020, 102, 075444.
- 23G. A. Nemnes, C. Visan, A. Manolescu, J. Mater. Chem. C. 2017, 5, 4435–4441.
- 24K. Ikemoto, R. Kobayashi, S. Sato, H. Isobe, Angew. Chem. Int. Ed. 2017, 56, 6511–6514.
- 25W. Niu, Y. Fu, G. Serra, K. Liu, J. Droste, Y. Lee, Z. Ling, F. Xu, J. D. Cojal Gonzalez, A. Lucotti, J. P. Rabe, M. Ryan Hansen, W. Pisula, P. W. M. Blom, C. A. Palma, M. Tommasini, Y. Mai, J. Ma, X. Feng, Angew. Chem. Int. Ed. 2023, 62, e202305737.
- 26I. Piquero-Zulaica, E. Corral-Rascon, X. Diaz de Cerio, A. Riss, B. Yang, A. Garcia-Lekue, M. A. Kher-Elden, Z. M. Abd El-Fattah, S. Nobusue, T. Kojima, K. Seufert, H. Sakaguchi, W. Auwarter, J. V. Barth, Nat. Commun. 2024, 15, 1062.
- 27T. Qin, D. Guo, J. Xiong, X. Li, L. Hu, W. Yang, Z. Chen, Y. Wu, H. Ding, J. Hu, Q. Xu, T. Wang, J. Zhu, Angew. Chem. Int. Ed. 2023, 62, e202306368.
- 28J. M. Fernandez-Garcia, P. J. Evans, S. Filippone, M. A. Herranz, N. Martin, Acc. Chem. Res. 2019, 52, 1565–1574.
- 29Q.-H. Guo, Y. Qiu, M.-X. Wang, J. Fraser Stoddart, Nat. Chem. 2021, 13, 402–419.
- 30S. Tong, J. T. Li, D. D. Liang, Y. E. Zhang, Q. Y. Feng, X. Zhang, J. Zhu, M. X. Wang, J. Am. Chem. Soc. 2020, 142, 14432–14436.
- 31G. W. Zhang, P. F. Li, Z. Meng, H. X. Wang, Y. Han, C. F. Chen, Angew. Chem. Int. Ed. 2016, 55, 5304–5308.
- 32F. Zhao, J. Zhao, H. Liu, Y. Wang, J. Duan, C. Li, J. Di, N. Zhang, X. Zheng, P. Chen, J. Am. Chem. Soc. 2023, 145, 10092–10103.
- 33L.-J. Peng, X.-Y. Wang, Z.-A. Li, H.-Y. Gong, Asian J. Org. Chem. 2023, 12, e202300543.
- 34W. Niu, Y. Fu, Z. L. Qiu, C. J. Schurmann, S. Obermann, F. Liu, A. A. Popov, H. Komber, J. Ma, X. Feng, J. Am. Chem. Soc. 2023, 145, 26824–26832.
- 35W. C. Guo, W. L. Zhao, K. K. Tan, M. Li, C. F. Chen, Angew. Chem. Int. Ed. 2024, e202401835.
- 36Y. Fan, J. He, L. Liu, G. Liu, S. Guo, Z. Lian, X. Li, W. Guo, X. Chen, Y. Wang, H. Jiang, Angew. Chem. Int. Ed. 2023, 62, e202304623.
- 37J. Han, P. Duan, X. Li, M. Liu, J. Am. Chem. Soc. 2017, 139, 9783–9786.
- 38D. Yang, J. Han, M. Liu, P. Duan, Adv. Mater. 2019, 31, e1805683.
- 39C. Du, Z. Li, X. Zhu, G. Ouyang, M. Liu, Nat. Nanotechnol. 2022, 17, 1294–1302.
- 40C. Ren, W. Sun, T. Zhao, C. Li, C. Jiang, P. Duan, Angew. Chem. Int. Ed. 2023, 62, e202315136.
- 41X. Yang, X. Gao, Y.-X. Zheng, H. Kuang, C.-F. Chen, M. Liu, P. Duan, Z. Tang, CCS Chem. 2023, 5, 2760–2789.
- 42Y. Zhu, J. Wang, Acc. Chem. Res. 2023, 56, 363–373.
- 43Q. Wang, W. W. Zhang, C. Zheng, Q. Gu, S. L. You, J. Am. Chem. Soc. 2021, 143, 114–120.
- 44K. Mori, T. Murase, M. Fujita, Angew. Chem. Int. Ed. 2015, 54, 6847–6851.
- 45T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 7763–7768.
- 46W. Fan, T. M. Fukunaga, S. Wu, Y. Han, Q. Zhou, J. Wang, Z. Li, X. Hou, H. Wei, Y. Ni, H. Isobe, J. Wu, Nat. Synth. 2023, 2, 880–887.
- 47P. J. Evans, J. Ouyang, L. Favereau, J. Crassous, I. Fernandez, J. Perles, N. Martin, Angew. Chem. Int. Ed. 2018, 57, 6774–6779.
- 48J. L. Belmonte-Vázquez, Y. A. Amador-Sánchez, L. A. Rodríguez-Cortés, B. Rodríguez-Molina, Chem. Mater. 2021, 33, 7160–7184.
- 49Deposition Number(s) 2346242 (for 1), 2346257 (for 2) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 50S. Míguez-Lago, I. F. A. Mariz, M. A. Medel, J. M. Cuerva, E. Maçôas, C. M. Cruz, A. G. Campaña, Chem. Sci. 2022, 13, 10267–10272.
- 51R. Kuroda, J. Chem. Soc. Perkin Trans. 2 1982, 789-794.
- 52C. Duan, J. Zhang, J. Xiang, X. Yang, X. Gao, Angew. Chem. Int. Ed. 2022, 61, e202201494.
- 53J. B. Birks, D. J. S. Birch, E. Cordemans, E. Vander Donckt, Chem. Phys. Lett. 1976, 43, 33–36.
- 54F. Morita, Y. Kishida, Y. Sato, H. Sugiyama, M. Abekura, J. Nogami, N. Toriumi, Y. Nagashima, T. Kinoshita, G. Fukuhara, M. Uchiyama, H. Uekusa, K. Tanaka, Nat. Synth. 2024, 3, 774–786.
- 55Y. Chen, C. Lin, Z. Luo, Z. Yin, H. Shi, Y. Zhu, J. Wang, Angew. Chem. Int. Ed. 2021, 60, 7796.
- 56Z.-H. Wu, A. Skabeev, Y. Zagranyarski, R. Duan, J.-O. Jin, M. Kwak, T. Basché, K. Müllen, C. Li, Angew. Chem. Int. Ed. 2023, 62, e202315156.
- 57X.-J. Zhao, H. Hou, P.-P. Ding, Z.-Y. Deng, Y.-Y. Ju, S.-H. Liu, Y.-M. Liu, C. Tang, L.-B. Feng, Y.-Z. Tan, Sci. Adv. 2020, 6, eaay8541.
- 58S. Guo, L. Liu, X. Li, G. Liu, Y. Fan, J. He, Z. Lian, H. Yang, X. Chen, H. Jiang, Small 2024, 20, 2308429.
- 59C. M. Cruz, I. R. Márquez, I. F. A. Mariz, V. Blanco, C. Sánchez-Sánchez, J. M. Sobrado, J. A. Martín-Gago, J. M. Cuerva, E. Maçôas, A. G. Campaña, Chem. Sci. 2018, 9, 3917–3924.
- 60T. C. Lovell, C. E. Colwell, Lev N. Zakharov, R. Jasti, Chem. Sci. 2019, 10, 3786–3790.
- 61N. Berova, K. Nakanishi, R. W. Woody, Circular dichroism: principles and applications, John Wiley & Sons, 2000.