Unraveling the Unique Strong Metal-Support Interaction in Titanium Dioxide Supported Platinum Clusters for the Hydrogen Evolution Reaction
Zhouxin Luo
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
These authors contribute equally to this work.
Search for more papers by this authorXiao Han
Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contribute equally to this work.
Search for more papers by this authorZhentao Ma
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
These authors contribute equally to this work.
Search for more papers by this authorDr. Bingxing Zhang
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorProf. Xusheng Zheng
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
Search for more papers by this authorProf. Yongfeng Liu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorProf. Mingxia Gao
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Guoqiang Zhao
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yue Lin
Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorProf. Hongge Pan
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wenping Sun
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorZhouxin Luo
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
These authors contribute equally to this work.
Search for more papers by this authorXiao Han
Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 China
These authors contribute equally to this work.
Search for more papers by this authorZhentao Ma
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
These authors contribute equally to this work.
Search for more papers by this authorDr. Bingxing Zhang
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorProf. Xusheng Zheng
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
Search for more papers by this authorProf. Yongfeng Liu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorProf. Mingxia Gao
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Guoqiang Zhao
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yue Lin
Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026 China
Search for more papers by this authorProf. Hongge Pan
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wenping Sun
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058 P. R. China
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 P. R. China
Search for more papers by this authorGraphical Abstract
We achieve the first construction of strong metal-support interaction (SMSI) between Pt sub-nanometer clusters and amorphous TiO2 nanosheets. Unique SMSI behaviors – ordering process of Pt atoms within clusters and superior stability in oxygen at high temperatures – are unraveled. Further investigation suggests that the disappeared CO adsorption ability originates from the unique electronic interaction after forming SMSI.
Abstract
Strong metal-support interaction (SMSI) is crucial to modulating the nature of metal species, yet the SMSI behaviors of sub-nanometer metal clusters remain unknown due to the difficulties in constructing SMSI at cluster scale. Herein, we achieve the successful construction of the SMSI between Pt clusters and amorphous TiO2 nanosheets by vacuum annealing, which requires a relatively low temperature that avoids the aggregation of small clusters. In situ scanning transmission electron microscopy observation is employed to explore the SMSI behaviors, and the results reveal the dynamic rearrangement of Pt atoms upon annealing for the first time. The originally disordered Pt atoms become ordered as the crystallizing of the amorphous TiO2 support, forming an epitaxial interface between Pt and TiO2. Such a SMSI state can remain stable in oxidation environment even at 400 °C. Further investigations prove that the electron transfer from TiO2 to Pt occupies the Pt 5d orbitals, which is responsible for the disappeared CO adsorption ability of Pt/TiO2 after forming SMSI. This work not only opens a new avenue for constructing SMSI at cluster scale but also provides in-depth understanding on the unique SMSI behavior, which would stimulate the development of supported metal clusters for catalysis applications.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202406728-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
anie202406728-sup-0001-Supporting_Information_Movie_S1.mp418.8 MB | Supporting Information |
anie202406728-sup-0001-Supporting_Information_Movie_S2.mp419.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. W. van Deelen, C. Hernández Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955–970;
- 1bY. Li, Y. Zhang, K. Qian, W. Huang, ACS Catal. 2022, 12, 1268–1287;
- 1cT. Pu, W. Zhang, M. Zhu, Angew. Chem. 2023, 62, e202212278;
- 1dZ. Luo, G. Zhao, H. Pan, W. Sun, Adv. Energy Mater. 2022, 12, 2201395.
- 2
- 2aS. Tauster, Acc. Chem. Res. 1987, 20, 389–394;
- 2bS. Tauster, S. Fung, R. L. Garten, J. Am. Chem. Soc. 1978, 100, 170–175;
- 2cH. Tang, Y. Su, B. Zhang, A. F. Lee, M. A. Isaacs, K. Wilson, L. Li, Y. Ren, J. Huang, M. Haruta, Sci. Adv. 2017, 3, e1700231.
- 3
- 3aM. Tang, S. Li, S. Chen, Y. Ou, M. Hiroaki, W. Yuan, B. Zhu, H. Yang, Y. Gao, Z. Zhang, Y. Wang, Angew. Chem. 2021, 133, 22513–22518;
- 3bZ. Wu, Y. Li, W. Huang, J. Phys. Chem. Lett. 2020, 11, 4603–4607;
- 3cX. Du, Y. Huang, X. Pan, B. Han, Y. Su, Q. Jiang, M. Li, H. Tang, G. Li, B. Qiao, Nat. Commun. 2020, 11, 1–8;
- 3dA. Beck, X. Huang, L. Artiglia, M. Zabilskiy, X. Wang, P. Rzepka, D. Palagin, M.-G. Willinger, J. A. van Bokhoven, Nat. Commun. 2020, 11, 3220;
- 3eS. Zhang, P. N. Plessow, J. J. Willis, S. Dai, M. Xu, G. W. Graham, M. Cargnello, F. Abild-Pedersen, X. Pan, Nano Lett. 2016, 16, 4528–4534.
- 4H. Frey, A. Beck, X. Huang, J. A. van Bokhoven, M.-G. Willinger, Science 2022, 376, 982–987.
- 5
- 5aT. Song, J. Dong, R. Li, X. Xu, M. Hiroaki, B. Yang, R. Zhang, Y. Bai, H. Xin, L. Lin, R. Mu, Q. Fu, X. Bao, J. Phys. Chem. Lett. 2021, 12, 4187–4194;
- 5bL. Deng, H. Miura, T. Shishido, S. Hosokawa, K. Teramura, T. Tanaka, Chem. Commun. 2017, 53, 6937–6940;
- 5cH. Tang, J. Wei, F. Liu, B. Qiao, X. Pan, L. Li, J. Liu, J. Wang, T. Zhang, J. Am. Chem. Soc. 2016, 138, 56–59;
- 5dT. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M. G. Willinger, Angew. Chem. 2015, 127, 4627–4631.
10.1002/ange.201411581 Google Scholar
- 6
- 6aH. Wang, L. Wang, D. Lin, X. Feng, Y. Niu, B. Zhang, F.-S. Xiao, Nat. Catal. 2021, 4, 418–424;
- 6bS. Liu, H. Qi, J. Zhou, W. Xu, Y. Niu, B. Zhang, Y. Zhao, W. Liu, Z. Ao, Z. Kuang, L. Li, M. Wang, J. Wang, ACS Catal. 2021, 11, 6081–6090;
- 6cH. Chen, Z. Yang, X. Wang, F. Polo-Garzon, P. W. Halstenberg, T. Wang, X. Suo, S.-Z. Yang, H. M. Meyer, Z. Wu, S. Dai, J. Am. Chem. Soc. 2021, 143, 8521–8526;
- 6dJ. Dong, Q. Fu, H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Cai, H. Zhang, Z. Liu, X. Bao, J. Am. Chem. Soc. 2020, 142, 17167–17174;
- 6eJ. Zhang, H. Wang, L. Wang, S. Ali, C. Wang, L. Wang, X. Meng, B. Li, D. S. Su, F.-S. Xiao, J. Am. Chem. Soc. 2019, 141, 2975–2983;
- 6fL. Wang, J. Zhang, Y. Zhu, S. Xu, C. Wang, C. Bian, X. Meng, F.-S. Xiao, ACS Catal. 2017, 7, 7461–7465;
- 6gJ. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 2017, 9, 120–127;
- 6hK. M. Siniard, M. Li, S. Z. Yang, J. Zhang, F. Polo-Garzon, Z. Wu, Z. Yang, S. Dai, Angew. Chem. 2023, e202214322.
- 7
- 7aC. Dong, Z. Gao, Y. Li, M. Peng, M. Wang, Y. Xu, C. Li, M. Xu, Y. Deng, X. Qin, Nature Catalysis 2022, 5, 485–493;
- 7bY. Guo, M. Wang, Q. Zhu, D. Xiao, D. Ma, Nature Catalysis 2022, 5, 766–776;
- 7cB. Zhang, Y. Chen, J. Wang, H. Pan, W. Sun, Adv. Funct. Mater. 2022, 32, 2202227;
- 7dB. Zhang, B. Zhang, G. Zhao, J. Wang, D. Liu, Y. Chen, L. Xia, M. Gao, Y. Liu, W. Sun, Nat. Commun. 2022, 13, 5894.
- 8
- 8aB. Han, Y. Guo, Y. Huang, W. Xi, J. Xu, J. Luo, H. Qi, Y. Ren, X. Liu, B. Qiao, Angew. Chem. 2020, 132, 11922–11927;
- 8bW. He, X. Zhang, K. Zheng, C. Wu, Y. Pan, H. Li, L. Xu, R. Xu, W. Chen, Y. Liu, Angew. Chem. 2023, 135, e202213365.
- 9
- 9aW. Zhao, D. Zhou, S. Han, Y. Li, J. Liu, Y. Zhou, M. Li, X. Zhang, W. Shen, J. Phys. Chem. C 2021, 125, 10386–10396;
- 9bM. Macino, A. J. Barnes, S. M. Althahban, R. Qu, E. K. Gibson, D. J. Morgan, S. J. Freakley, N. Dimitratos, C. J. Kiely, X. Gao, Nat. Catal. 2019, 2, 873–881.
- 10G. Xiang, T. Li, J. Zhuang, X. Wang, Chem. Commun. 2010, 46, 6801–6803.
- 11
- 11aJ. Xue, X. Zhu, Y. Zhang, W. Wang, W. Xie, J. Zhou, J. Bao, Y. Luo, X. Gao, Y. Wang, L.-y. Jang, S. Sun, C. Gao, ChemCatChem 2016, 8, 2010;
- 11bH. Thakur, R. Kumar, P. Thakur, N. B. Brookes, K. K. Sharma, A. P. Singh, Y. Kumar, S. Gautam, K. H. Chae, J. Appl. Phys. 2011, 110, 083718.
- 12A. Casu, A. Lamberti, S. Stassi, A. Falqui, Nanomaterials 2018, 8, 40.
- 13
- 13aS. C. Ray, D. K. Mishra, A. B. Panda, H. T. Wang, S. Bhattacharya, W. F. Pong, J. Phys. Chem. C 2022, 126, 8947–8952;
- 13bM.-Y. Hsu, W.-C. Yang, H. Teng, J. Leu, J. Electrochem. Soc. 2011, 158, K81;
- 13cR. Brydson, B. Williams, W. Engel, H. Sauer, E. Zeitler, J. Thomas, Solid State Commun. 1987, 64, 609–612;
- 13dS. Kucheyev, T. Van Buuren, T. Baumann, J. Satcher Jr, T. Willey, R. Meulenberg, T. Felter, J. Poco, S. Gammon, L. Terminello, Phys. Rev. B 2004, 69, 245102;
- 13eL. Soriano, M. Abbate, J. Vogel, J. Fuggle, A. Fernández, A. González-Elipe, M. Sacchi, J. Sanz, Surf. Sci. 1993, 290, 427–435.
- 14
- 14aS. C. Fung, J. Catal. 1982, 76, 225–230;
- 14bC. Ko, R. Gorte, J. Catal. 1984, 90, 59–64;
- 14cS. Tauster, ACS Publications 1986.
- 15
- 15aJ. Liu, A. J. Hensley, G. Giannakakis, A. J. Therrien, A. Sukkar, A. C. Schilling, K. Groden, N. Ulumuddin, R. T. Hannagan, M. Ouyang, Appl. Catal. B 2021, 284, 119716;
- 15bA. Moscu, L. Veyre, C. Thieuleux, F. Meunier, Y. Schuurman, Catal. Today 2015, 258, 241–246;
- 15cK. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 2015, 350, 189–192;
- 15dL. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G. W. Graham, X. Pan, P. Christopher, J. Am. Chem. Soc. 2017, 139, 14150–14165;
- 15eP. Bazin, O. Saur, J. Lavalley, M. Daturi, G. Blanchard, Phys. Chem. Chem. Phys. 2005, 7, 187–194.
- 16Y. Zhang, W. Yan, H. Qi, X. Su, Y. Su, X. Liu, L. Li, X. Yang, Y. Huang, T. Zhang, ACS Catal. 2022, 12, 1697–1705.
- 17S. J. Tauster, S. C. Fung, R. L. Garten, J. Am. Chem. Soc. 1978, 100, 170–175.
- 18
- 18aM. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550;
- 18bS. Xu, H. Li, J. Du, J. Tang, L. Wang, ACS Sustainable Chem. Eng. 2018, 6, 6418–6424;
- 18cC. Dong, Y. Li, D. Cheng, M. Zhang, J. Liu, Y.-G. Wang, D. Xiao, D. Ma, ACS Catal. 2020, 10, 11011–11045;
- 18dH. Guan, J. Lin, B. Qiao, X. Yang, L. Li, S. Miao, J. Liu, A. Wang, X. Wang, T. Zhang, Angew. Chem. 2016, 55, 2820–2824;
- 18eX. Zhao, X. Kong, F. Wang, R. Fang, Y. Li, Angew. Chem. 2021, 60, 10842–10849.
- 19
- 19aJ.-W. Jun, Y.-W. Suh, D. J. Suh, Y.-K. Lee, Catal. Today 2018, 302, 108–114;
- 19bC.-J. Pan, M.-C. Tsai, W.-N. Su, J. Rick, N. G. Akalework, A. K. Agegnehu, S.-Y. Cheng, B.-J. Hwang, J. Taiwan Inst. Chem. Eng. 2017, 74, 154–186;
- 19cB.-J. Hsieh, M.-C. Tsai, C.-J. Pan, W.-N. Su, J. Rick, H.-L. Chou, J.-F. Lee, B.-J. Hwang, Electrochim. Acta 2017, 224, 452–459.
- 20
- 20aJ. A. Van Bokhoven, C. Lamberti, X-ray absorption and X-ray emission spectroscopy: theory and applications, Vol. 1, John Wiley & Sons, 2016;
- 20bZ. Sun, Q. Liu, T. Yao, W. Yan, S. Wei, Sci. China Mater. 2015, 58, 313–341;
- 20cD. Q. Liu, Z. Luo, B. Zhang, G. Zhao, W. Guo, J. Chen, M. Gao, Y. Liu, H. Pan, W. Sun, Adv. Energy Mater. 2023, 13, 2202913.
- 21
- 21aJ. Timoshenko, A. Kuzmin, Comput. Phys. Commun. 2009, 180, 920–925;
- 21bH. Funke, A. Scheinost, M. Chukalina, Phys. Rev. B 2005, 71, 094110;
- 21cZ. Xia, H. Zhang, K. Shen, Y. Qu, Z. Jiang, Phys. B 2018, 542, 12–19.
- 22J. Horsley, J. Am. Chem. Soc. 1979, 101, 2870–2874.
- 23
- 23aL. Hao, H. Huang, Y. Zhang, T. Ma, Adv. Funct. Mater. 2021, 31, 2100919;
- 23bY. Huang, Y. Yu, Y. Yu, B. Zhang, Solar RRL 2020, 4, 2000037.
- 24
- 24aS. C. Fung, J. Catal. 1982, 76;
- 24bJ. Herrmann, J. Catal. 1984, 89, 404–412.