Commercializable Naphthalene Diimide Anolytes for Neutral Aqueous Organic Redox Flow Batteries
Xu Liu
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
These authors contributed equally to this work.
Search for more papers by this authorHeng Zhang
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
These authors contributed equally to this work.
Search for more papers by this authorChenjing Liu
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorZengrong Wang
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorXuri Zhang
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorHaiyan Yu
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorYujie Zhao
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorProf. Dr. Ming-Jia Li
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Yinshi Li
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049 China
Search for more papers by this authorProf. Dr. Ya-Ling He
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Gang He
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049 China
Search for more papers by this authorXu Liu
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
These authors contributed equally to this work.
Search for more papers by this authorHeng Zhang
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
These authors contributed equally to this work.
Search for more papers by this authorChenjing Liu
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorZengrong Wang
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorXuri Zhang
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorHaiyan Yu
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorYujie Zhao
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
Search for more papers by this authorProf. Dr. Ming-Jia Li
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Dr. Yinshi Li
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049 China
Search for more papers by this authorProf. Dr. Ya-Ling He
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Gang He
Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054 China
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049 China
Search for more papers by this authorGraphical Abstract
This work proposed the hydrothermal synthesis methodology for the preparation of high-performance naphthalene diimide materials on a hundred-gram scale, and showed great commercial potential offering cost-effective production. Under the synergistic effects of π–π stacking and H-bonding networks, naphthalene diimide delivered excellent battery performance including high capacity/power, and long lifetime.
Abstract
Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π–π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g−1 ($2.43 Ah−1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L−1, and a power density of 318 mW cm−2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202405427-sup-0001-misc_information.pdf33.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J. Aziz, M. P. Marshak, Science 2015, 349, 1529–1532;
- 1bR. F. Service, Science 2018, 362, 508–509.
- 2B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935.
- 3
- 3aP. Leung, A. A. Shah, L. Sanz, C. Flox, J. R. Morante, Q. Xu, M. R. Mohamed, C. Ponce de León, F. C. Walsh, J. Power Sources 2017, 360, 243–283;
- 3bX. Lv, P. T. Sullivan, W. Li, H.-C. Fu, R. Jacobs, C.-J. Chen, D. Morgan, S. Jin, D. Feng, Nat. Energy 2023, 8, 1109–1118;
- 3cL. Zhang, R. Feng, W. Wang, G. Yip, Nat. Chem. Rev. 2022, 6, 524–543;
- 3dM. Park, J. Ryu, W. Wang, J. Cho, Nat. Rev. Mater. 2017, 2, 16080;
- 3eY. Ding, C. Zhang, L. Zhang, Y. Zhou, G. Yu, Chem. Soc. Rev. 2018, 47, 69–103.
- 4
- 4aY. Yao, J. Lei, Y. Shi, F. Ai, Y.-C. Lu, Nat. Energy 2021, 6, 582–588;
- 4bS. Wan, H. Jiang, Z. Guo, C. He, X. Liang, N. Djilali, T. Zhao, Energy Environ. Sci. 2022, 15, 2874–2888;
- 4cO. C. Esan, X. Shi, Z. Pan, X. Huo, L. An, T. Zhao, Adv. Energy Mater. 2020, 10, 2000758;
- 4dW. Li, S. Liao, Z. Xiang, M. Huang, Z. Fu, L. Li, Z. Liang, Chem. Eng. Sci. 2023, 270, 118534.
- 5Z. Li, T. Jiang, M. Ali, C. Wu, W. Chen, Energy Storage Mater. 2022, 50, 105–138.
- 6X. Liu, X. Zhang, C. Bao, Z. Wang, H. Zhang, G. Li, N. Yan, M.-J. Li, G. He, CCS Chem. 2023, 5, 2334–2347.
- 7
- 7aH. Li, H. Fan, B. Hu, L. Hu, G. Chang, J. Song, Angew. Chem. Int. Ed. 2021, 60, 26971–26977;
- 7bZ. Xiang, W. Li, K. Wan, Z. Fu, Z. Liang, Angew. Chem. Int. Ed. 2022, 62, e202214601.
- 8
- 8aS. Pang, X. Wang, P. Wang, Y. Ji, Angew. Chem. Int. Ed. 2021, 60, 5289–5298;
- 8bA. Hollas, X. Wei, V. Murugesan, Z. M. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, Nat. Energy 2018, 3, 508–514;
- 8cS. Pang, S. Jin, F. Yang, M. Alberts, L. Li, D. Xi, R. G. Gordon, P. Wang, M. J. Aziz, Y. Ji, Nat. Energy 2023, 8, 1126–1136.
- 9
- 9aS. A. Odom, Joule 2018, 2, 1652–1653;
- 9bD. G. Kwabi, K. Lin, Y. Ji, E. F. Kerr, M.-A. Goulet, D. De Porcellinis, D. P. Tabor, D. A. Pollack, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Joule 2018, 2, 1894–1906.
- 10
- 10aR. Feng, X. Zhang, V. Murugesan, A. Hollas, Y. Chen, Y. Shao, E. Walter, N. P. N. Wellala, L. Yan, K. M. Rosso, W. Wang, Science 2021, 372, 836–840;
- 10bX. Wei, W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W. A. Henderson, T. Liu, L. Cosimbescu, B. Li, V. Sprenkle, W. Wang, Angew. Chem. Int. Ed. 2015, 54, 8684–8687.
- 11X. Zu, L. Zhang, Y. Qian, C. Zhang, G. Yu, Angew. Chem. Int. Ed. 2020, 59, 22163–22170.
- 12J. Winsberg, C. Stolze, S. Muench, F. Liedl, M. D. Hager, U. S. Schubert, ACS Energy Lett. 2016, 1, 976–980.
- 13X. Li, P. Gao, Y.-Y. Lai, J. D. Bazak, A. Hollas, H.-Y. Lin, V. Murugesan, S. Zhang, C.-F. Cheng, W. Tung, Y. Lai, R. Feng, J. Wang, C.-L. Wang, W. Wang, Y. Zhu, Nat. Energy 2021, 6, 873–881.
- 14
- 14aB. Kim, J. Lee, Y.-P. Chen, X.-Q. Wu, J. Kang, H. Jeong, S. E. Bae, J.-R. Li, J. Sung, J. Park, Sci. Adv. 2022, 8, eade1383;
- 14bB. J. Eckstein, F. S. Melkonyan, E. F. Manley, S. Fabiano, A. R. Mouat, L. X. Chen, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2017, 139, 14356–14359;
- 14cS. V. Bhosale, M. Al Kobaisi, R. W. Jadhav, P. P. Morajkar, L. A. Jones, S. George, Chem. Soc. Rev. 2021, 50, 9845–9998;
- 14dM. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor, S. V. Bhosale, Chem. Rev. 2016, 116, 11685–11796;
- 14eS. L. Suraru, F. Wurthner, Angew. Chem. Int. Ed. 2014, 53, 7428–7448;
- 14fW. Jiang, Z. Wang, J. Am. Chem. Soc. 2022, 144, 14976–14991;
- 14gZ. Wang, F. Yu, W. Chen, J. Wang, J. Liu, C. Yao, J. Zhao, H. Dong, W. Hu, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 17580–17586.
- 15
- 15aE. Castaldelli, K. D. G. Imalka Jayawardena, D. C. Cox, G. J. Clarkson, R. I. Walton, L. Le-Quang, J. Chauvin, S. R. P. Silva, G. J. Demets, Nat. Commun. 2017, 8, 2139;
- 15bQ.-H. Zhu, G.-H. Zhang, L. Zhang, S. Wang, J. Fu, Y.-H. Wang, L. Ma, L. He, G.-H. Tao, J. Am. Chem. Soc. 2023, 145, 6177–6183;
- 15cP. Chen, D. Wang, L. Luo, J. Meng, Z. Zhou, X. Dai, Y. Zou, L. Tan, X. Shao, C. A. Di, C. Jia, H.-L. Zhang, Z. Liu, Adv. Mater. 2023, 35, 2300240.
- 16C. Yang, L. A. Farmer, D. A. Pratt, S. Maldonado, C. R. J. Stephenson, J. Am. Chem. Soc. 2021, 143, 10324–10332.
- 17
- 17aW. Yan, C. Wang, J. Tian, G. Zhu, L. Ma, Y. Wang, R. Chen, Y. Hu, L. Wang, T. Chen, J. Ma, Z. Jin, Nat. Commun. 2019, 10, 2513;
- 17bJ. Xie, P. Gu, Q. Zhang, ACS Energy Lett. 2017, 2, 1985–1996.
- 18C. Wiberg, L. Evenas, M. Busch, E. Ahlberg, J. Electroanal. Chem. 2021, 896, 115224.
- 19V. Singh, S. Kwon, Y. Choi, S. Ahn, G. Kang, Y. Yi, M. H. Lim, J. Seo, M. H. Baik, H. R. Byon, Adv. Mater. 2023, 35, e2210859.
- 20X.-L. Lv, P. Sullivan, H. Fu, X. Hu, H. Liu, S. Jin, W. Li, D. Feng, ACS Energy Lett. 2022, 7, 2428–2434.
- 21P. T. Sullivan, H. Liu, X. L. Lv, S. Jin, W. Li, D. Feng, Adv. Energy Mater. 2023, 13, 2203919.
- 22M. E. Carrington, K. Sokołowski, E. Jónsson, E. W. Zhao, A. M. Graf, I. Temprano, J. A. McCune, C. P. Grey, O. A. Scherman, Nature 2023, 623, 949–955.
- 23V. Medabalmi, M. Sundararajan, V. Singh, M. H. Baik, H. R. Byon, J. Mater. Chem. A 2020, 8, 11218–11223.
- 24M. Shahsavan, C. Wiberg, P. Peljo, Chem. Commun. 2022, 58, 12692–12695.
- 25V. Singh, S. Ahn, H. R. Byon, Batteries & Supercaps 2022, 5, e202200281.
- 26M. Pan, W. Wang, H. Wang, J. Ma, M. Shao, Z. Jin, J. Power Sources 2023, 580, 233269.
- 27J.-L. Bredas, Mater. Horiz. 2014, 1, 17–19.
- 28M. A. Iron, R. Cohen, B. Rybtchinski, J. Phys. Chem. A 2011, 115, 2047–2056.
- 29
- 29aS. K. Keshri, T. Ishizuka, T. Kojima, Y. Matsushita, M. Takeuchi, J. Am. Chem. Soc. 2021, 143, 3238–3244;
- 29bT. Nakamura, N. Shioya, T. Shimoaka, R. Nishikubo, T. Hasegawa, A. Saeki, Y. Murata, R. Murdey, A. Wakamiya, Chem. Mater. 2019, 31, 1729–1737.
- 30
- 30aF. Dai, Q. Zhuang, G. Huang, H. Deng, X. Zhang, ACS Omega 2023, 8, 17064–17076;
- 30bS. Yagai, M. Usui, T. Seki, H. Murayama, Y. Kikkawa, S. Uemura, T. Karatsu, A. Kitamura, A. Asano, S. Seki, J. Am. Chem. Soc. 2012, 134, 7983–7994.
- 31
- 31aQ. Chen, Y. Lv, Z. Yuan, X. Li, G. Yu, Z. Yang, T. Xu, Adv. Funct. Mater. 2022, 32, 2108777;
- 31bB. Hu, C. DeBruler, Z. Rhodes, T. L. Liu, J. Am. Chem. Soc. 2017, 139, 1207–1214;
- 31cH. Fan, B. Hu, H. Li, M. Ravivarma, Y. Feng, J. Song, Angew. Chem. Int. Ed. 2022, 61, e202115908;
- 31dH. Fan, W. Wu, M. Ravivarma, H. Li, B. Hu, J. Lei, Y. Feng, X. Sun, J. Song, T. L. Liu, Adv. Funct. Mater. 2022, 32, 2203032.
- 32W. Wu, A. P. Wang, J. Luo, T. L. Liu, Angew. Chem. Int. Ed. 2023, 62, e2022166.
- 33X. Yuan, M. Huang, Z. Liang, Int. J. Heat Mass Transfer 2023, 205, 123924.
- 34
- 34aJ. Yu, Y. Liu, W. Yu, Y. He, Z. Zhang, K. Sun, P. Tan, J. Energy Storage 2023, 72, 108383;
- 34bA. Tang, J. Bao, M. Skyllas-Kazacos, J. Power Sources 2014, 248, 154–162.
- 35S. Hu, T. Li, M. Huang, J. Huang, W. Li, L. Wang, Z. Chen, Z. Fu, X. Li, Z. Liang, Adv. Mater. 2021, 33, 2005839.
- 36
- 36aM. Gao, M. Salla, Y. Song, Q. Wang, Angew. Chem. Int. Ed. 2022, 61, e202208223;
- 36bG. Tang, Y. Liu, Y. Li, K. Peng, P. Zuo, Z. Yang, T. Xu, JACS Au 2022, 2, 1214–1222;
- 36cC. DeBruler, B. Hu, J. Moss, X. Liu, J. Luo, Y. Sun, T. L. Liu, Chem 2017, 3, 961–978;
- 36dX. Liu, X. Zhang, G. Li, S. Zhang, B. Zhang, W. Ma, Z. Wang, Y. Zhang, G. He, J. Mater. Chem. A 2022, 10, 9830–9836;
- 36eZ. Wang, X. Liu, X. Zhang, H. Zhang, Y. Zhao, Y. Li, H. Yu, G. He, Mater. Horiz. 2024, 11, 1283–1293;
- 36fM. Huang, W. Li, D. Lin, K. Wan, Z. Fu, Z. Xiang, Z. Liang, Energy Storage Mater. 2024, 67, 103267;
- 36gL. Wang, M. Huang, K. Wan, Z. Fu, Z. Xiang, Z. Liang, Adv. Funct. Mater. 2023, 34, 2310620;
- 36hB. Hu, J. Luo, M. Hu, B. Yuan, T. L. Liu, Angew. Chem. Int. Ed. 2019, 131, 16782–16789;
- 36iJ. Luo, B. Hu, C. Debruler, T. L. Liu, Angew. Chem. Int. Ed. 2018, 57, 231–235;
- 36jM. Pan, Y. Lu, S. Lu, B. Yu, J. Wei, Y. Liu, Z. Jin, ACS Appl. Mater. Interfaces 2021, 13, 44174–44183;
- 36kY. Zhu, F. Yang, Z. Niu, H. Wu, Y. He, H. Zhu, J. Ye, Y. Zhao, X. Zhang, J. Power Sources 2019, 417, 83–89.
- 37Z. Chen, Y. Liu, W. Yu, Q. He, M. Ni, S. Yang, S. Zhang, P. Tan, J. Energy Storage 2021, 44, 103327.