Circularly Polarized Luminescence Induced by Hydrogen-Bonding Networks in a One-Dimensional Hybrid Manganese(II) Chloride
Dr. Jing Li
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorDr. Qiulian Luo
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorDr. Jianwu Wei
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorProf. Liya Zhou
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorProf. Peican Chen
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorCorresponding Author
Prof. Binbin Luo
Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, Guangdong P. R. China
Search for more papers by this authorProf. Yibo Chen
Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qi Pang
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorProf. Jin Zhong Zhang
Department of Chemistry and Biochemistry, University of California, Santa Cruz California, 95064 United States
Search for more papers by this authorDr. Jing Li
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorDr. Qiulian Luo
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorDr. Jianwu Wei
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorProf. Liya Zhou
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorProf. Peican Chen
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorCorresponding Author
Prof. Binbin Luo
Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, Guangdong P. R. China
Search for more papers by this authorProf. Yibo Chen
Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qi Pang
School of Chemistry and Chemical Engineering/State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures/Guangxi Key Laboratory of Electrochemical Energy Materials/Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi P. R. China
Search for more papers by this authorProf. Jin Zhong Zhang
Department of Chemistry and Biochemistry, University of California, Santa Cruz California, 95064 United States
Search for more papers by this authorGraphical Abstract
A new one-dimensional (1D) hybrid chiral manganese chloride with near-unity photoluminescence quantum yield (PLQY), circularly polarized luminescence (CPL), and high-thermal stability is presented. It is extremely promising for applications in red circularly polarized light-emitting diodes (CP-LED) and X-ray imaging.
Abstract
Chiral hybrid metal halides hold great potential as circularly polarized luminescence light sources. Herein, we have obtained two enantiomeric pairs of one-dimensional hybrid chiral manganese(II) chloride single crystals, R/S-(3-methyl piperidine)MnCl3 (R/S-1) and R/S-(3-hydroxy piperidine)MnCl3 (R/S-2), crystallizing in the non-centrosymmetric space group P212121. In comparison to R/S-1, R/S-2 single crystals not only show red emission with near-unity photoluminescence quantum yield (PLQY) and high resistance to thermal quenching but also exhibit circularly polarized luminescence with an asymmetry factor (glum) of 2.5×10−3, which can be attributed to the enhanced crystal rigidity resulting from the hydrogen bonding networks between R/S-(3-hydroxy piperidine) cations and [MnCl6]4− chains. The circularly polarized luminescence activities originate from the asymmetric [MnCl6]4− luminophores induced by N−H⋅⋅⋅Cl hydrogen bonding with R/S-(3-hydroxy piperidine). Moreover, these samples demonstrate great application potential in circularly polarized light-emitting diodes and X-ray scintillators. This work shows a highly efficient photoluminescent Mn-based halide and offers a strategy for designing multifunctional chiral metal halides.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202405310-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zhang, S. Yu, B. Han, Y. Zhou, X. Zhang, X. Gao, Z. Tang, Matter 2022, 5, 837–875.
- 2S. Ma, J. Ahn, J. Moon, Adv. Mater. 2021, 33, 2005760.
- 3J. Möbs, P. Klement, G. Stuhrmann, L. Gümbel, M. J. Müller, S. Chatterjee, J. Heine, J. Am. Chem. Soc. 2023, 145, 23478–23487.
- 4J. Crassous, M. J. Fuchter, D. E. Freedman, N. A. Kotov, J. Moon, M. C. Beard, S. Feldmann, Nat. Rev. Mater. 2023, 8, 365–371.
- 5J. Y. Wang, Y. Si, X. M. Luo, Z. Y. Wang, X. Y. Dong, P. Luo, C. Zhang, C. Duan, S. Q. Zang, Adv. Sci. 2023, 10, 2207660.
- 6Z. Dong, W. Li, H. Wang, X. Jiang, H. Liu, L. Zhu, H. Chen, Matter 2022, 5, 448–481.
- 7S. K. Sen, R. D. Mukhopadhyay, S. Choi, I. Hwang, K. Kim, Chem 2023, 9, 624–636.
- 8Z. Liu, J. Ai, T. Bai, Y. Fang, K. Ding, Y. Duan, L. Han, S. Che, Chem 2022, 8, 186–196.
- 9M. Deng, N. F. Mukthar, N. D. Schley, G. Ung, Angew. Chem. Int. Ed. 2020, 59, 1228–1231.
- 10H. Duim, M. A. Loi, Matter 2021, 4, 3835–3851.
- 11Y. Liu, Z. Luo, Y. Wei, C. Li, Y. Chen, X. He, X. Chang, Z. Quan, Angew. Chem. 2023, 135, e202306821.
- 12Y. Zhao, X. Yin, Z. Gu, M. Yuan, J. Ma, T. Li, L. Jiang, Y. Wu, Y. Song, Adv. Funct. Mater. 2023, 2306199.
- 13A. Pietropaolo, A. Mattoni, G. Pica, M. Fortino, G. Schifino, G. Grancini, Chem 2022, 8, 1231–1253.
- 14X. Tang, H. Jiang, Y. Si, N. Rampal, W. Gong, C. Cheng, X. Kang, D. Fairen-Jimenez, Y. Cui, Y. Liu, Chem 2021, 7, 2771–2786.
- 15Z. Li, C. Ji, Y. Fan, T. Zhu, S. You, J. Wu, R. Li, Z.-K. Zhu, P. Yu, X. Kuang, J. Am. Chem. Soc. 2023, 145, 25134–25142.
- 16C. K. Yang, W. N. Chen, Y. T. Ding, J. Wang, Y. Rao, W. Q. Liao, Y. Y. Tang, P. F. Li, Z. X. Wang, R. G. Xiong, Adv. Mater. 2019, 31, 1808088.
- 17J.-X. Gao, W.-Y. Zhang, Z.-G. Wu, Y.-X. Zheng, D.-W. Fu, J. Am. Chem. Soc. 2020, 142, 4756–4761.
- 18J. Zhao, H. Huo, Y. Zhao, Y. Guo, M. Dong, Y. Fu, J. Zhang, Z. Gao, L. Kang, Chem. Mater. 2023, 35, 4347–4354.
- 19H. Zheng, R. Zhang, X. Wu, Q. Zhang, Z. Wu, W. P. Wong, J. Chen, Q.-H. Xu, K. P. Loh, J. Am. Chem. Soc. 2023, 145, 3569–3576.
- 20S. Liu, X. Liu, Y. Wu, D. Zhang, Y. Wu, H. Tian, Z. Zheng, W.-H. Zhu, Matter 2022, 5, 2319–2333.
- 21Y. Dang, X. Liu, B. Cao, X. Tao, Matter 2021, 4, 794–820.
- 22Z. Han, K. Wang, M. Wang, T. Sun, J. Xu, H.-C. Zhou, P. Cheng, W. Shi, Chem 2023.
- 23C. Lu, B. Clayville, J. Y. Choi, J. Park, Chem 2023, 9, 2757–2770.
- 24G. Zhou, Z. Liu, M. S. Molokeev, Z. Xiao, Z. Xia, X.-M. Zhang, J. Mater. Chem. C 2021, 9, 2047–2053.
- 25B. Liang, L. Zhang, Y. Jiang, S. Chen, M. Yuan, J. Mater. Chem. C 2023, 11, 4993–5008.
- 26Z. Song, X. Liu, C. Yang, Q. Wu, X. Guo, G. Liu, Y. Wei, L. Meng, Y. Dang, Adv. Opt. Mater. 2024, 12, 2301272.
- 27J. Chen, S. Zhang, X. Pan, R. Li, S. Ye, A. K. Cheetham, L. Mao, Angew. Chem. Int. Ed. 2022, 61, e202205906.
- 28T. Zhang, H. Kang, B. Li, J. Zhou, P. Zhao, T. Zhao, X. Li, S. Jiang, J. Mater. Chem. C 2023, 11, 5461–5468.
- 29H. L. Xuan, Y. F. Sang, L. J. Xu, D. S. Zheng, C. M. Shi, Z. N. Chen, Chem. Eur. J. 2022, 28, e202201299.
- 30M. Wang, X. Wang, B. Zhang, F. Li, H. Meng, S. Liu, Q. Zhao, J. Mater. Chem. C 2023, 11, 3206–3212.
- 31M. P. Davydova, L. Meng, M. I. Rakhmanova, Z. Jia, A. S. Berezin, I. Y. Bagryanskaya, Q. Lin, H. Meng, A. V. Artem′ev, Adv. Mater. 2023, 35, 2303611.
- 32Z. Zhou, T. Jiang, Y. Yang, Y. Deng, M. Wang, Y. Ma, S. Liu, Q. Zhao, Adv. Opt. Mater. 2023, 2302185.
- 33M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19–32.
- 34S. Yan, W. Tian, H. Chen, K. Tang, T. Lin, G. Zhong, L. Qiu, X. Pan, W. Wang, Adv. Funct. Mater. 2021, 31, 2100855.
- 35H. Tang, Y. Xu, X. Hu, H. Chen, S. Wang, W. Jiang, Q. Hu, L. Wang, W. Jiang, Laser Photonics Rev. 2024, 18, 2300672.
- 36W. Li, Z. Zhou, C. Wang, Y. Li, S. Kurosawa, G. Ren, X. OuYang, Y. Wu, Advanced Sensor Research 2023, 2, 2200083.
- 37G. Hu, B. Xu, A. Wang, Y. Guo, J. Wu, F. Muhammad, W. Meng, C. Wang, S. Sui, Y. Liu, Adv. Funct. Mater. 2021, 31, 2011191.
- 38X. Cheng, X. Chang, Y. Lin, L. Lv, L. Cong, Y. Jia, J. Yin, J. Li, B. B. Cui, Small 2023, 2307216.
- 39M. Li, Y. Wang, L. Yang, Z. Chai, Y. Wang, S. Wang, Angew. Chem. 2022, 134, e202208440.
- 40J. B. Luo, J. H. Wei, Z. Z. Zhang, Z. L. He, D. B. Kuang, Angew. Chem. 2023, 135, e202216504.
- 41Z. Gong, W. Zheng, P. Huang, X. Cheng, W. Zhang, M. Zhang, S. Han, X. Chen, Nano Today 2022, 44, 101460.
- 42K. Xu, A. Meijerink, Chem. Mater. 2018, 30, 5346–5352.
- 43X. Yuan, S. Ji, M. C. De Siena, L. Fei, Z. Zhao, Y. Wang, H. Li, J. Zhao, D. R. Gamelin, Chem. Mater. 2017, 29, 8003–8011.
- 44G. H. Tan, Y. N. Chen, Y. T. Chuang, H. C. Lin, C. A. Hsieh, Y. S. Chen, T. Y. Lee, W. C. Miao, H. C. Kuo, L. Y. Chen, Small 2023, 19, 2205981.
- 45X. Cheng, Z. Xie, W. Zheng, R. Li, Z. Deng, D. Tu, X. Shang, J. Xu, Z. Gong, X. Li, Adv. Sci. 2022, 9, 2103724.
- 46W. Zhang, J. Wei, Z. Gong, P. Huang, J. Xu, R. Li, S. Yu, X. Cheng, W. Zheng, X. Chen, Adv. Sci. 2020, 7, 2002210.
- 47W. Zhang, P. Sui, W. Zheng, L. Li, S. Wang, P. Huang, W. Zhang, Q. Zhang, Y. Yu, X. Chen, Angew. Chem. 2023, e202309230.
- 48A. M. Anthony, M. K. Pandian, P. Pandurangan, M. Bhagavathiachari, ACS Appl. Mater. Interfaces 2022, 14, 29735–29743.
- 49H. Peng, B. Zou, Y. Guo, Y. Xiao, R. Zhi, X. Fan, M. Zou, J. Wang, J. Mater. Chem. C 2020, 8, 6488–6495.
- 50H. Zheng, A. Ghosh, M. Swamynadhan, G. Wang, Q. Zhang, X. Wu, I. Abdelwahab, W. P. Wong, Q.-H. Xu, S. Ghosh, J. Am. Chem. Soc. 2023, 145, 18549–18559.
- 51G. Zheng, Y. Chen, T. Chang, C. Chen, S. Zhang, Y. Wang, Y. Gao, B. Zou, R. Zeng, Mater. Today Chem. 2023, 30, 101572.
- 52L. Mao, P. Guo, S. Wang, A. K. Cheetham, R. Seshadri, J. Am. Chem. Soc. 2020, 142, 13582–13589.
- 53Y. Liu, J. Zhang, B. Han, X. Wang, Z. Wang, C. Xue, G. Bian, D. Hu, R. Zhou, D.-S. Li, J. Am. Chem. Soc. 2020, 142, 6649–6660.
- 54P. Gerner, C. Reinhard, H. U. Güdel, Chem. Eur. J. 2004, 10, 4735–4741.
- 55K. H. Song, J. J. Wang, L. Z. Feng, F. He, Y. C. Yin, J. N. Yang, Y. H. Song, Q. Zhang, X. C. Ru, Y. F. Lan, Angew. Chem. Int. Ed. 2022, 61, e202208960.
- 56J. Chen, X. Pan, X. Zhang, C. Sun, C. Chen, X. Ji, R. Chen, L. Mao, Small 2023, 2300938.
- 57M. P. Davydova, L. Meng, M. I. Rakhmanova, I. Y. Bagryanskaya, V. S. Sulyaeva, H. Meng, A. V. Artem'ev, Adv. Opt. Mater. 2023, 11, 2202811.
- 58Deposition numbers 2314770, 2314771, 2314772 and 2314773, contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.