Surface Lattice Modulation Enables Stable Cycling of High-Loading All-solid-state Batteries at High Voltages
Hong-Shen Zhang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049 Beijing, P. R. China
Search for more papers by this authorXin-Cheng Lei
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Dong Su
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorSi-Jie Guo
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
Search for more papers by this authorJia-Cheng Zhu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Xue-Feng Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorXing Zhang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
Search for more papers by this authorTing-Ting Wu
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
Search for more papers by this authorSi-Qi Lu
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yu-Tao Li
Beijing Frontier Research Center on Clean Energy, Huairou Division, Institute of Physics, Chinese Academy of Sciences, Yongle North Second Street, Yanqi Economic Development Zone, Huairou District, 101400 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. An-Min Cao
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049 Beijing, P. R. China
Search for more papers by this authorHong-Shen Zhang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049 Beijing, P. R. China
Search for more papers by this authorXin-Cheng Lei
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Dong Su
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorSi-Jie Guo
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
Search for more papers by this authorJia-Cheng Zhu
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorProf. Xue-Feng Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 Zhongguancun South Third Street, 100190 Beijing, P. R. China
Search for more papers by this authorXing Zhang
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
Search for more papers by this authorTing-Ting Wu
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
Search for more papers by this authorSi-Qi Lu
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yu-Tao Li
Beijing Frontier Research Center on Clean Energy, Huairou Division, Institute of Physics, Chinese Academy of Sciences, Yongle North Second Street, Yanqi Economic Development Zone, Huairou District, 101400 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. An-Min Cao
CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190 Beijing, P. R. China
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049 Beijing, P. R. China
Search for more papers by this authorGraphical Abstract
We have demonstrated a surface-lattice-doping (SLD) strategy for the stabilization of the solid electrolyte/cathode interface for its working at a high voltage of 4.5 V. Specifically, a uniform AlPO4 coating layer was built with nanometer precision around the LiCoO2 (LCO) particle. The following sintering at high temperature induced a homogeneous Al3+ diffusion into the LCO crust, leading to a controlled degree of surface Al/Co/Li disorder together with the formed Li+-conductive Li3PO4 islands decorating the LCO surface. We found that this SLD strategy is capable of not only suppressing the structural degradation of LCO itself, but also effectively mitigating the decomposition of the chloride-based solid electrolyte at the interface, thereby ensuring the assembled all-solid-state batteries with the halide electrolyte Li3InCl6 and a LiCoO2 cathode excellent cycling stability at 4.5 V.
Abstract
Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all–solid–state Li–ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+–doped, cation–disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium–deficient layer featuring a rock–salt–like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high–loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide–based ASSBs at high voltages.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202400562-sup-0001-misc_information.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy. 2016, 1, 16030;
- 1bN. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682–686.
- 2
- 2aT. Lee, J. Qi, C. A. Gadre, H. Huyan, S.-T. Ko, Y. Zuo, C. Du, J. Li, T. Aoki, R. Wu, J. Luo, S. P. Ong, X. Pan, Nat. Commun. 2023, 14, 1940;
- 2bM. B. Dixit, B. S. Vishugopi, W. Zaman, P. Kenesei, J.-S. Park, J. Almer, P. P. Mukherjee, K. B. Hatzell, Nat. Mater. 2022, 21, 1298–1305.
- 3X. Zhao, Z. Zhao-Karger, M. Fichtner, X. Shen, Angew. Chem. Int. Ed. 2020, 59, 5902–5949.
- 4
- 4aX. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Angew. Chem. Int. Ed. 2019, 58, 16698–16698;
- 4bT. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075;
- 4cK. Wang, Q. Ren, Z. Gu, C. Duan, J. Wang, F. Zhu, Y. Fu, J. Hao, J. Zhu, L. He, C.-W. Wang, Y. Lu, J. Ma, C. Ma, Nat. Commun. 2021, 12, 4410;
- 4dL. Zhou, T.-T. Zuo, C. Y. Kwok, S. Y. Kim, A. Assoud, Q. Zhang, J. Janek, L. F. Nazar, Nat. Energy. 2022, 7, 83–93;
- 4eY. Tanaka, K. Ueno, K. Mizuno, K. Takeuchi, T. Asano, A. Sakai, Angew. Chem. Int. Ed. 2023, 62, e202217581.
- 5S. Y. Kim, K. Kaup, K.-H. Park, A. Assoud, L. Zhou, J. Liu, X. Wu, L. F. Nazar, ACS Materials Lett. 2021, 3, 930–938.
- 6
- 6aC. Wang, J. Liang, J. Luo, J. Liu, X. Li, F. Zhao, R. Li, H. Huang, S. Zhao, L. Zhang, Sci. Adv. 2021, 7;
- 6bB. Zahiri, A. Patra, C. Kiggins, A. X. B. Yong, E. Ertekin, J. B. Cook, P. V. Braun, Nat. Mater. 2021, 20, 1392–1400.
- 7
- 7aB. He, F. Zhang, Y. Xin, C. Xu, X. Hu, X. Wu, Y. Yang, H. Tian, Nat. Chem. Rev. 2023, 7, 826–842;
- 7bT. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278–1291.
- 8S. Wang, Q. Bai, A. M. Nolan, Y. Liu, S. Gong, Q. Sun, Y. Mo, Angew. Chem. Int. Ed. 2019, 58, 8039–8043.
- 9W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim, G. Ceder, Chem. Mater. 2016, 28, 266–273.
- 10
- 10aS. Zhang, F. Zhao, S. Wang, J. Liang, J. Wang, C. Wang, H. Zhang, K. Adair, W. Li, M. Li, H. Duan, Y. Zhao, R. Yu, R. Li, H. Huang, L. Zhang, S. Zhao, S. Lu, T.-K. Sham, Y. Mo, X. Sun, Adv. Energy Mater. 2021, 11, 2100836;
- 10bI. Kochetkov, T.-T. Zuo, R. Ruess, B. Singh, L. Zhou, K. Kaup, J. Janek, L. Nazar, Energy Environ. Sci. 2022, 15, 3933–3944.
- 11
- 11aS. P. Culver, R. Koerver, W. G. Zeier, J. Janek, Adv. Energy Mater. 2019, 9, 1900626;
- 11bR. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, J. Janek, Chem. Mater. 2017, 29, 5574–5582;
- 11cW. Zhang, F. H. Richter, S. P. Culver, T. Leichtweiss, J. G. Lozano, C. Dietrich, P. G. Bruce, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces. 2018, 10, 22226–22236;
- 11dY. Han, S. H. Jung, H. Kwak, S. Jun, H. H. Kwak, J. H. Lee, S. T. Hong, Y. S. Jung, Adv. Energy Mater. 2021, 2100126.
- 12R. Yu, C. Wang, H. Duan, M. Jiang, A. Zhang, A. Fraser, J. Zuo, Y. Wu, Y. Sun, Y. Zhao, J. Liang, J. Fu, S. Deng, Z. Ren, G. Li, H. Huang, R. Li, N. Chen, J. Wang, X. Li, C. V. Singh, X. Sun, Adv. Mater. 2023, 35, 2207234.
- 13S. Xu, X. Tan, W. Ding, W. Ren, Q. Zhao, W. Huang, J. Liu, R. Qi, Y. Zhang, J. Yang, C. Zuo, H. Ji, H. Ren, B. Cao, H. Xue, Z. Gao, H. Yi, W. Zhao, Y. Xiao, Q. Zhao, M. Zhang, F. Pan, Angew. Chem. Int. Ed. 2023, 62, e202218595.
- 14F.-L. Yang, W. Zhang, Z.-X. Chi, F.-Q. Cheng, J.-T. Chen, A.-M. Cao, L.-J. Wan, Chem. Commun. 2015, 51, 2943–2945.
- 15X. Wang, Q. Wu, S. Li, Z. Tong, D. Wang, H. L. Zhuang, X. Wang, Y. Lu, Energy Storage Mater. 2021, 37, 67–76.
- 16J.-Y. Piao, Y.-G. Sun, S.-Y. Duan, A.-M. Cao, X.-L. Wang, R.-J. Xiao, X.-Q. Yu, Y. Gong, L. Gu, Y. Li, Z.-J. Liu, Z.-Q. Peng, R.-M. Qiao, W.-L. Yang, X.-Q. Yang, J. B. Goodenough, L.-J. Wan, Chem. 2018, 4, 1685–1695.
- 17S.-Q. Lu, Q. Zhang, F. Meng, Y.-N. Liu, J. Mao, S. Guo, M.-Y. Qi, Y.-S. Xu, Y. Qiao, S.-D. Zhang, K. Jiang, L. Gu, Y. Xia, S. Chen, G. Chen, A.-M. Cao, L.-J. Wan, J. Am. Chem. Soc. 2023, 145, 7397–7407.
- 18K.-H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu, L. F. Nazar, ACS Energy Lett. 2020, 5, 533–539.
- 19
- 19aY. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, B. Guo, Adv. Energy Mater. 2021, 11, 2000982;
- 19bQ. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y. A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareño, Y. Ren, W. Lu, Y. Li, Nat. Energy. 2018, 3, 936–943.
- 20L. Wang, X. Sun, J. Ma, B. Chen, C. Li, J. Li, L. Chang, X. Yu, T.-S. Chan, Z. Hu, M. Noked, G. Cui, Adv. Energy Mater. 2021, 11, 2100881.
- 21T.-T. Zuo, R. Rueß, R. Pan, F. Walther, M. Rohnke, S. Hori, R. Kanno, D. Schröder, J. Janek, Nat. Commun. 2021, 12, 6669.
- 22D. Lee, H. Lee, T. Song, U. Paik, Adv. Energy Mater. 2022, 12, 2200948.
- 23P. Minnmann, L. Quillman, S. Burkhardt, F. H. Richter, J. Janek, J. Electrochem. Soc. 2021, 168, 040537.
- 24
- 24aS.-D. Zhang, M.-Y. Qi, S. Guo, Y.-G. Sun, T.-T. Wu, H.-S. Zhang, S.-Q. Lu, F. Meng, Q. Zhang, L. Gu, Z. Zhao, Z. Peng, H. Jin, H. Ji, Y.-R. Lu, T.-S. Chan, R. Duan, A.-M. Cao, Energy Storage Mater. 2023, 57, 289–298;
- 24bM. Cai, Y. Dong, M. Xie, W. Dong, C. Dong, P. Dai, H. Zhang, X. Wang, X. Sun, S. Zhang, M. Yoon, H. Xu, Y. Ge, J. Li, F. Huang, Nat. Energy. 2023, 8, 159–168.
- 25M. Jiang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater. 2021, 11, 2103005.
- 26Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces. 2015, 7, 23685–23693.
- 27A. M. Nolan, Y. Liu, Y. Mo, ACS Energy Lett. 2019, 4, 2444–2451.