Matched Kinetics Process Over Fe2O3-Co/NiO Heterostructure Enables Highly Efficient Nitrate Electroreduction to Ammonia
Qiang Yang
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYongguang Bu
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorShuailei Pu
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLonggang Chu
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorWeifeng Huang
College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, 558000 Duyun, China
Search for more papers by this authorProf. Xiangdong Zhu
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCun Liu
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Guodong Fang
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Peixin Cui
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dongmei Zhou
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Prof. Yujun Wang
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorQiang Yang
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorYongguang Bu
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorShuailei Pu
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLonggang Chu
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorWeifeng Huang
College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, 558000 Duyun, China
Search for more papers by this authorProf. Xiangdong Zhu
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCun Liu
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Guodong Fang
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Peixin Cui
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorProf. Dongmei Zhou
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Prof. Yujun Wang
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorGraphical Abstract
We developed a strategy for Ni2+ substitution of Co2+ to develop an oxide heterostructure on (Co0.83Ni0.16)2Fe layered double oxides (LDOs) for highly efficient electroreduction nitrate reduction reaction (NO3−RR) to ammonia (NH3), where Ni plays a dual role in NO3−RR by i) modifying the electronic behavior of Co, and ii) serving as complementary sites for active hydrogen (*H) supply. Therefore, the adsorption capacity of *NO2 and its subsequent hydrogenation on the Co sites became more thermodynamically feasible.
Abstract
Tandem nitrate electroreduction reaction (NO3−RR) is a promising method for green ammonia (NH3) synthesis. However, the mismatched kinetics processes between NO3−-to-NO2− and NO2−-to-NH3 results in poor selectivity for NH3 and excess NO2− evolution in electrolyte solution. Herein, a Ni2+ substitution strategy for developing oxide heterostructure in Co/Fe layered double oxides (LDOs) was designed and employed as tandem electrocataltysts for NO3−RR. (Co0.83Ni0.16)2Fe exhibited a high NH3 yield rate of 50.4 mg ⋅ cm−2 ⋅ h−1 with a Faradaic efficiency of 97.8 % at −0.42 V vs. reversible hydrogen electrode (RHE) in a pulsed electrolysis test. By combining with in situ/operando characterization technologies and theoretical calculations, we observed the strong selectivity of NH3 evolution over (Co0.83Ni0.16)2Fe, with Ni playing a dual role in NO3−RR by i) modifying the electronic behavior of Co, and ii) serving as complementary site for active hydrogen (*H) supply. Therefore, the adsorption capacity of *NO2 and its subsequent hydrogenation on the Co sites became more thermodynamically feasible. This study shows that Ni substitution promotes the kinetics of the NO3−RR and provides insights into the design of tandem electrocatalysts for NH3 evolution.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data supporting the findings of this study are available upon request from the corresponding authors. The data are not publicly available because of privacy and ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202400428-sup-0001-misc_information.pdf4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Guo, P. Chen, Chem. 2017, 3, 709–712;
- 1bX. Fu, J. B. Pedersen, Y. Zhou, M. Saccoccio, S. Li, R. Sažinas, K. Li, S. Z. Andersen, A. Xu, N. H. J. S. Deissler, Science 2023, 379, 707–712.
- 2
- 2aG. Soloveichik, Nat. Catal. 2019, 2, 377–380;
- 2bI. Rafiqul, C. Weber, B. Lehmann, A. Voss, Energy 2005, 30, 2487–2504.
- 3
- 3aM. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, H. Hosono, Nat. Chem. 2012, 4, 934–940;
- 3bS. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nature Catalysis 2018, 1, 490–500;
- 3cH. Zhang, C. Wang, H. Luo, J. Chen, M. Kuang, J. Yang, Angew. Chem. Int. Ed. 2023, 62, e202217071.
- 4
- 4aB. H. R. Suryanto, H. L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290–296;
- 4bC. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. Int. Ed. 2018, 57, 6073–6076.
- 5
- 5aP. H. van Langevelde, I. Katsounaros, M. T. M. Koper, Joule 2021, 5, 290–294;
- 5bK. Fan, W. Xie, J. Li, Y. Sun, P. Xu, Y. Tang, Z. Li, M. Shao, Nat. Commun. 2022, 13, 7958;
- 5cT. M. Bowles, S. S. Atallah, E. E. Campbell, A. C. M. Gaudin, W. R. Wieder, A. S. Grandy, Nat. Sustain. 2018, 1, 399–408.
- 6X. Wang, X. Wu, W. Ma, X. Zhou, S. Zhang, D. Huang, L. R. Winter, J. H. Kim, M. Elimelech, Proc. Natl. Acad. Sci. USA 2023, 120, e2217703120.
- 7G.-F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, Nat. Energy 2020, 5, 605–613.
- 8
- 8aI. Moura, J. J. G. Moura, Curr. Opin. Chem. Biol. 2001, 5, 168–175;
- 8bO. Einsle, A. Messerschmidt, P. Stach, G. P. Bourenkov, H. D. Bartunik, R. Huber, P. M. H. Kroneck, Nature 1999, 400, 476–480;
- 8cP. H. van Langevelde, S. Engbers, F. Buda, D. G. H. Hetterscheid, ACS Catal. 2023, 13, 10094–10103.
- 9
- 9aD. F. Abbott, Y. Z. Xu, D. A. Kuznetsov, P. Kumar, C. R. Müller, A. Fedorov, V. Mougel, Angew. Chem. Int. Ed. 2023, n/a, e202313746;
- 9bX. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu, X. Wei, N. He, C. Xie, W. Chen, J. Zheng, P. Chen, S. P. Jiang, Y. Li, Q. Liu, S. Wang, Nat. Commun. 2022, 13, 5337;
- 9cS. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen, Z. Li, Y. Wang, Q. Wang, X. Wang, H. Wei, J. Zhang, P. Wang, S. Zhang, L. Yu, L. Dong, Q. Zhu, H. Zhang, J. Lu, Nat. Commun. 2023, 14, 3634.
- 10X. Zhao, Y. Jiang, M. Wang, S. Liu, Z. Wang, T. Qian, C. Yan, Adv. Energy Mater. 2023, 13, 2301409.
- 11D. Yin, D. Chen, Y. Zhang, W. Wang, Q. Quan, W. Wang, Y. Meng, Z. Lai, Z. Yang, S. Yip, C.-Y. Wong, X. Bu, X. Wang, J. C. Ho, Adv. Funct. Mater. 2023, n/a, 2303803.
- 12H. Jiang, G. F. Chen, O. Savateev, J. Xue, L. X. Ding, Z. Liang, M. Antonietti, H. Wang, Angew. Chem. Int. Ed. 2023, 62, e202218717.
- 13W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira, W. Schuhmann, Nat. Commun. 2022, 13, 1129.
- 14Y. Bu, C. Wang, W. Zhang, X. Yang, J. Ding, G. Gao, Angew. Chem. Int. Ed. 2023, 62, e202217337.
- 15
- 15aY. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. H. Nam, C. S. Tan, Y. Ding, J. Wu, Y. Lum, C. T. Dinh, D. Sinton, G. Zheng, E. H. Sargent, J. Am. Chem. Soc. 2020, 142, 5702–5708;
- 15bC. Lu, S. Lu, W. Qiu, Q. Liu, Electrochim. Acta 1999, 44, 2193–2197.
- 16
- 16aY. Huang, C. He, C. Cheng, S. Han, M. He, Y. Wang, N. Meng, B. Zhang, Q. Lu, Y. Yu, Nat. Commun. 2023, 14, 7368;
- 16bR. Zhao, Q. Yan, L. Yu, T. Yan, X. Zhu, Z. Zhao, L. Liu, J. Xi, Adv. Mater. 2023, 35, 2306633.
- 17
- 17aY. Baik, M. Kwen, K. Lee, S. Chi, S. Lee, K. Cho, H. Kim, M. Choi, J. Am. Chem. Soc. 2023, 145, 11364–11374;
- 17bY. Zhou, R. Duan, H. Li, M. Zhao, C. Ding, C. Li, ACS Catal. 2023, 13, 10846–10854.
- 18
- 18aA. I. Khan, D. O′Hare, J. Mater. Chem. A 2002, 12, 3191–3198;
- 18bS. Kwon, J. Zhang, R. Ganganahalli, S. Verma, B. S. Yeo, Angew. Chem. Int. Ed. 2023, 62, e202217252;
- 18cY. N. Xu, W. Li, H. Q. Fu, X. Y. Zhang, J. Y. Zhao, X. Wu, H. Y. Yuan, M. Zhu, S. Dai, P. F. Liu, H. G. Yang, Angew. Chem. Int. Ed. 2023, 62, e202217296.
- 19M. Q. Zhao, Q. Zhang, J. Q. Huang, F. Wei, Adv. Funct. Mater. 2012, 22, 675–694.
- 20
- 20aX. Yang, Y. Tian, S. Mukherjee, K. Li, X. Chen, J. Lv, S. Liang, L. K. Yan, G. Wu, H. Y. Zang, Angew. Chem. Int. Ed. 2023, 62, e202304797;
- 20bZ. Chang, G. Meng, Y. Chen, C. Chen, S. Han, P. Wu, L. Zhu, H. Tian, F. Kong, M. Wang, X. Cui, J. Shi, Adv. Mater. 2023, 35, 2304508;
- 20cY. Li, J. Ma, Z. Wu, Z. Wang, Environ. Sci. Technol. 2022, 56, 8673–8681.
- 21
- 21aW. Wang, J. Chen, E. C. M. Tse, J. Am. Chem. Soc. 2023, 145, 26678–26687;
- 21bQ. Hu, S. Qi, Q. Huo, Y. Zhao, J. Sun, X. Chen, M. Lv, W. Zhou, C. Feng, X. Chai, H. Yang, C. He, J. Am. Chem. Soc. 2023.
- 22Y. Zhao, Y. Zhang, Y. Ding, M. Chen, Dalton Trans. 2015, 44, 15628–15635.
- 23
- 23aC. J. Flynn, E. E. Oh, S. M. McCullough, R. W. Call, C. L. Donley, R. Lopez, J. F. Cahoon, J. Phys. Chem. C 2014, 118, 14177–14184;
- 23bC. Shi, Z. Long, C. Wu, H. Dai, Z. Li, H. Qiao, K. Liu, Q. H. Fan, K. Wang, Small 2023, n/a, 2303802.
- 24
- 24aC. Wang, T. Wang, B. Wang, X. Zhou, X. Cheng, P. Sun, J. Zheng, G. Lu, Sci. Rep. 2016, 6, 26432;
- 24bY. Tang, T. Zhao, H. Han, Z. Yang, J. Liu, X. Wen, F. Wang, Adv. Sci. 2023, 10, 2300122;
- 24cX. Yang, W. Chen, Y. Liu, Y. Yu, B. Liang, J. Hu, H. Huang, Ceram. Int. 2023, 49, 8435–8446.
- 25
- 25aB. Chi, H. Lin, J. Li, N. Wang, J. Yang, Int. J. Hydrogen Energy 2006, 31, 1210–1214;
- 25bS. K. Tiwari, S. Samuel, R. N. Singh, G. Poillerat, J. F. Koenig, P. Chartier, Int. J. Hydrogen Energy 1995, 20, 9–15.
- 26S. Calvin, XAFS for Everyone, CRC press, 2013.
10.1201/b14843 Google Scholar
- 27U. Öpik, M. H. L. Pryce, Proc. Math. Phys. Eng. Sci. 1997, 238, 425–447.
- 28J. Wang, Y. Qin, S. Jin, Y. Yang, J. Zhu, X. Li, X. Lv, J. Fu, Z. Hong, Y. Su, H. B. Wu, J. Am. Chem. Soc. 2023.
- 29Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350–5354.
- 30J. Derosa, P. Garrido-Barros, M. Li, J. C. Peters, J. Am. Chem. Soc. 2022, 144, 20118–20125.
- 31R. Chauhan, V. C. Srivastava, Chem. Eng. J. 2020, 386, 122065.
- 32P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797–800.
- 33J. Feng, L. Zhang, S. Liu, L. Xu, X. Ma, X. Tan, L. Wu, Q. Qian, T. Wu, J. Zhang, X. Sun, B. Han, Nat. Commun. 2023, 14, 4615.
- 34E. Murphy, Y. Liu, I. Matanovic, M. Rüscher, Y. Huang, A. Ly, S. Guo, W. Zang, X. Yan, A. Martini, J. Timoshenko, B. R. Cuenya, I. V. Zenyuk, X. Pan, E. D. Spoerke, P. Atanassov, Nat. Commun. 2023, 14, 4554.
- 35
- 35aY. Ling, C. Mills, R. Weber, L. Yang, Y. Zhang, J. Am. Chem. Soc. 2010, 132, 1583–1591;
- 35bJ. Y. Fang, Q. Z. Zheng, Y. Y. Lou, K. M. Zhao, S. N. Hu, G. Li, O. Akdim, X. Y. Huang, S.-G. Sun, Nat. Commun. 2022, 13, 7899.